The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs

Type: Article

Publication Date: 2015-04-01

Citations: 10

DOI: https://doi.org/10.3934/era.2015.22.1

Abstract

Loebl, Koml\'os and S\'os conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. For our proof, we use a structural decomposition which can be seen as an analogue of Szemer\'edi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].

Locations

  • Electronic Research Announcements - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ AND EMBEDDING TREES IN SPARSE GRAPHS 2015 Jan Hladk
Diana Piguet
Mikl ́ Os
Maya Stein
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture I: The Sparse Decomposition 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ The approximate Loebl-Komlós-Sós Conjecture 2012 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture IV: Embedding Techniques and the Proof of the Main Result 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture II: The Rough Structure of LKS Graphs 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture III: The Finer Structure of LKS Graphs 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat An approximate version of the Loebl-Komlós-Sós conjecture 2007 Diana Piguet
Maya Stein
+ PDF Chat An approximate version of the Loebl–Komlós–Sós conjecture 2011 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ A blow-up lemma for approximate decompositions 2016 Jaehoon Kim
Daniela Kühn
Deryk Osthus
Mykhaylo Tyomkyn
+ The sparse regularity lemma and its applications 2005 Stefanie Gerke
Angelika Steger
+ Szemerédi’s Regularity Lemma for Sparse Graphs 1997 Yoshiharu Kohayakawa
+ PDF Chat Holes in Graphs 2001 Yuejian Peng
Vojtěch Rödl
Andrzej Ruciński
+ The Blow-up Lemma 2001 János Komlós
+ The Blow-up Lemma 1999 János Komlós
+ Loebl–Komlós–Sós Conjecture: Dense case 2015 Jan Hladký
Diana Piguet
+ Embedding large graphs 2009 Julia Böttcher
+ A Sparse Regular Approximation Lemma 2016 Guy Moshkovitz
A. Shapira
+ PDF Chat Embedding Nearly Spanning Trees 2024 Bruce Reed
Maya Stein