Supercuspidal representations of GLn(F) distinguished by a Galois involution

Type: Article

Publication Date: 2019-09-21

Citations: 11

DOI: https://doi.org/10.2140/ant.2019.13.1677

Abstract

Let F{F0 be a quadratic extension of non-Archimedean locally compact fields of residual characteristic p ‰ 2, and let σ denote its non-trivial automorphism.Let R be an algebraically closed field of characteristic different from p. To any cuspidal representation π of GLnpFq, with coefficients in R, such that π σ » π _ (such a representation is said to be σ-selfdual) we associate a quadratic extension D{D0, where D is a tamely ramified extension of F and D0 is a tamely ramified extension of F0, together with a quadratic character of D 0 .When π is supercuspidal, we give a necessary and sufficient condition, in terms of these data, for π to be GLnpF0q-distinguished.When the characteristic ℓ of R is not 2, denoting by ω the non-trivial R-character of F 0 trivial on F{F0-norms, we prove that any σ-selfdual supercuspidal R-representation is either distinguished or ω-distinguished, but not both.In the modular case, that is when ℓ ą 0, we give examples of σ-selfdual cuspidal nonsupercuspidal representations which are not distinguished nor ω-distinguished.In the particular case where R is the field of complex numbers, in which case all cuspidal representations are supercuspidal, this gives a complete distinction criterion for arbitrary complex cuspidal representations, as well as a purely local proof, for cuspidal representations, of the dichotomy and disjunction theorem due to Kable and Anandavardhanan-Kable-Tandon, when p ‰ 2.

Locations

  • Algebra & Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Modulo $\ell$ distinction problems 2022 Peiyi Cui
Thomas Lanard
Hengfei Lu
+ Cuspidal $\ell$-modular representations of $\mathrm{GL}_n(F)$ distinguished by a Galois involution 2023 Robert Kurinczuk
Nadir Matringe
Vincent Sécherre
+ Correspondance de Jacquet-Langlands et distinction : cas des representations cuspidales de niveau 0 2013 Charlène Coniglio-Guilloton
+ Correspondance de Jacquet-Langlands et distinction : cas des representations cuspidales de niveau 0 2013 Charlène Coniglio-Guilloton
+ PDF Chat Correspondance de Jacquet-Langlands et distinction : cas des représentations cuspidales de niveau 0 2016 Charlène Coniglio-Guilloton
+ Modulo <i>ℓ</i> distinction problems 2024 Peiyi Cui
Thomas Lanard
Hengfei Lu
+ Supercuspidal representations of $\mathrm{GL}_{n}(F)$ distinguished by a unitary involution 2019 Jiandi Zou
+ PDF Chat Supercuspidal representations of GL (F) distinguished by an orthogonal involution 2022 Jiandi Zou
+ Représentations cuspidales de GL(r,D) distinguées par une involution intérieure 2020 Vincent Sécherre
+ PDF Chat The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero 2022 Marion Chommaux
Nadir Matringe
+ Unitary representations of GL(n,K) distinguished by a Galois involution, for K a p-adic field 2013 Nadir Matringe
+ Local distinction, quadratic base change and automorphic induction for $\mathrm{GL_n}$ 2021 Nadir Matringe
+ Local distinction, quadratic base change and automorphic induction for $\mathrm{GL_n}$ 2021 Nadir Matringe
+ Distinction inside L-packets of SL(n) 2020 U. K. Anandavardhanan
Nadir Matringe
+ Supercuspidal representations of $\mathrm{GL}_{n}(F)$ distinguished by an orthogonal involution 2020 Jiandi Zou
+ PDF Chat Distinction inside L-packets of SL(n) 2023 U. K. Anandavardhanan
Nadir Matringe
+ Gamma factors root numbers and distinction 2016 Nadir Matringe
Omer Offen
+ Gamma factors root numbers and distinction 2016 Nadir Matringe
Omer Offen
+ SELF-CONTRAGREDIENT SUPERCUSPIDAL REPRESENTATIONS OF GLn 2016 Jeffrey D. Adler
+ PDF Chat Regular representations of GLn( O) and the inertial Langlands correspondence 2019 Anna Szumowicz