A Pellian Equation with Primes and Applications to $$D(-1)$$ D ( - 1 ) -Quadruples

Type: Article

Publication Date: 2018-05-27

Citations: 5

DOI: https://doi.org/10.1007/s40840-018-0638-5

Locations

  • Bulletin of the Malaysian Mathematical Sciences Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Pellian equation with primes and its applications 2017 Ivan Soldo
+ There is no Diophantine $D(-1)$--quadruple. 2020 Nicolae Ciprian Bonciocat
Mihai Cipu
Maurice Mignotte
+ A diophantine problem in ℤ[1 + \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\sqrt d\) \end{document})/2] 2009 Zrinka Franušić
+ The extendibility of Diophantine pairs with property $D(-1)$ 2020 Jinseo Park
+ PDF Chat There is no Diophantine D(−1)$D(-1)$‐quadruple 2022 Nicolae Ciprian Bonciocat
Mihai Cipu
Maurice Mignotte
+ There are no Diophantine quadruples of Pell numbers 2021 Salah Eddine Rihane
Florian Luca
Alain Togbé
+ PDF Chat Diophantine quadruples with the properties $$D(n_1)$$ and $$D(n_2)$$ 2019 Andrej Dujella
Vinko Petričević
+ Diophantine \(D(n)\)-quadruples in \(\mathbb{Z}[\sqrt{4k + 2}]\) 2024 Kalyan Chakraborty
Shubham Gupta
Azizul Hoque
+ Diophantine $D(n)$-quadruples in $\mathbb{Z}[\sqrt{4k + 2}]$ 2023 Kalyan Chakraborty
Shubham Gupta
Azizul Hoque
+ Diophantine quadruples in the ring Z[√2] 2004 Zrinka Franušić
+ DIOPHANTINE QUADRUPLES IN Z( √ −2) 2010 Andrej Dujella
Ivan Soldo
+ PDF Chat On some particular regular Diophantine 3-tuples 2019 Özen Özer
Zekiye Çiloğlu
+ Construction of Strong Diophantine Quadruples and Pell Equation 2014 M. A. Gopalan
S. Vidhyalakshmi
E. Premalatha
+ S-Diophantine quadruples with $\mathbf{S=\{2,q\}}$ 2014 László Szalay
Volker Ziegler
+ A note on the number of $S$-Diophantine quadruples 2014 Florian Luca
Volker Ziegler
+ Diophantine triples in the ring of integers of the quadratic field Q[√ -t], t>0 2016 Ivan Soldo
+ Finding all $S$-Diophantine quadruples for a fixed set of primes $S$ 2020 Volker Ziegler
+ Finding all $S$-Diophantine quadruples for a fixed set of primes $S$ 2020 Volker Ziegler
+ On the prime divisors of elements of a $D(-1)$ quadruple 2013 Anitha Srinivasan
+ On the prime divisors of elements of a $D(-1)$ quadruple 2013 Anitha Srinivasan