Sharp weighted norm estimates beyond Calderón–Zygmund theory

Type: Article

Publication Date: 2016-07-29

Citations: 102

DOI: https://doi.org/10.2140/apde.2016.9.1079

Abstract

We dominate nonintegral singular operators by adapted sparse operators and derive optimal norm estimates in weighted spaces.Our assumptions on the operators are minimal and our result applies to an array of situations, whose prototypes are Riesz transforms or multipliers, or paraproducts associated with a second-order elliptic operator.It also applies to such operators whose unweighted continuity is restricted to Lebesgue spaces with certain ranges of exponents .p0 ; q 0 / with 1 Ä p 0 < 2 < q 0 Ä 1.The norm estimates obtained are powers ˛of the characteristic used by Auscher and Martell.The critical exponent in this case is p D 1 C p 0 =q 0 0 .We prove ˛D 1=.p p 0 / when p 0 < p Ä p and ˛D .q0 1/=.q0 p/ when p Ä p < q 0 .In particular, we are able to obtain the sharp A 2 estimates for nonintegral singular operators which do not fit into the class of Calderón-Zygmund operators.These results are new even in Euclidean space and are the first ones for operators whose kernel does not satisfy any regularity estimate.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights 2006 Pascal Auscher
José María Martell
+ PDF Chat Weighted norm inequalities for strongly singular convolution operators 1984 Sagun Chanillo
+ PDF Chat Weighted norm inequalities, off-diagonal estimates and elliptic operators 2010 Pascal Auscher
José María Martell
+ Sharp Weighted Estimates for Classical Operators [post-print] 2010 David Cruz-Uribe Sfo
José María Martell
Carlos Pérez
+ Weighted estimates of Calderon-Zygmund operators on vector-valued function spaces 2016 Amalia Culiuc
+ Weak And Strong Type Estimates for Maximal Truncations of Calder\'on-Zygmund Operators on $ A_p$ Weighted Spaces 2011 Tuomas Hytönen
Michael T. Lacey
Henri Martikainen
Tuomas Orponen
María Carmen Reguera
Eric T. Sawyer
Ignacio Uriarte-Tuero
+ Sharp weighted estimates for classical operators 2011 David Cruz-Uribe
José María Martell
Carlos Pérez
+ Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator 2017 Guoen Hu
+ A Note On $\ell^r$-Valued Calderon-Zygmund Operators 2012 James Scurry
+ Weighted norm inequalities for Calderon-Zygmund operators without doubling conditions 2001 Xavier Tolsa
+ PDF Chat Weighted norm inequalities for Calderon-Zygmund operators without doubling conditions 2001 Xavier Tolsa
+ PDF Chat A Simple Proof of the Sharp Weighted Estimate for Calderón–Zygmund Operators on Homogeneous Spaces 2012 Theresa C. Anderson
Armen Vagharshakyan
+ Hardy space estimates for limited ranges of Muckenhoupt weights 2017 Jarod Hart
Lucas Oliveira
+ Calderon–Zygmund singular integral estimates in generalized weighted function spaces 2020 Ahmed Loulit
+ PDF Chat Sharp norm inequalities for commutators of classical operators 2011 SFO David Cruz-Uribe
Kabe Moen
+ Weighted scale estimates for Calderón-Zygmund type operators 2007 Der–Chen Chang
Junfeng Li
Jie Xiao
+ Weighted norm inequalities for Calderón-Zygmund operators 2007 Xavier Tolsa
+ On the continuity of strongly singular Calderón-Zygmund-type operators on Hardy spaces 2021 Cláudio Roberto Fóffano Vasconcelos
Tiago Picon
+ Quantitative $C_p$ estimates for Calderón-Zygmund operators 2018 Javier Canto
+ PDF Chat Weighted norm estimates of noncommutative Calder\'{o}n-Zygmund operators 2025 Wenfei Fan
Yong Jiao
Lian Wu
Dejian Zhou