Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures

Type: Article

Publication Date: 2020-01-01

Citations: 178

DOI: https://doi.org/10.1039/d0mh00787k

Abstract

One of the ultimate goals of computational modeling in condensed matter is to be able to accurately compute materials properties with minimal empirical information. First-principles approaches such as the density functional theory (DFT) provide the best possible accuracy on electronic properties but they are limited to systems up to a few hundreds, or at most thousands of atoms. On the other hand, classical molecular dynamics (CMD) simulations and finite element method (FEM) are extensively employed to study larger and more realistic systems, but conversely depend on empirical information. Here, we show that machine-learning interatomic potentials (MLIPs) trained over short ab-initio molecular dynamics trajectories enable first-principles multiscale modeling, in which DFT simulations can be hierarchically bridged to efficiently simulate macroscopic structures. As a case study, we analyze the lattice thermal conductivity of coplanar graphene/borophene heterostructures, recently synthesized experimentally (Sci. Adv. 2019; 5: eaax6444), for which no viable classical modeling alternative is presently available. Our MLIP-based approach can efficiently predict the lattice thermal conductivity of graphene and borophene pristine phases, the thermal conductance of complex graphene/borophene interfaces and subsequently enable the study of effective thermal transport along the heterostructures at continuum level. This work highlights that MLIPs can be effectively and conveniently employed to enable first-principles multiscale modeling via hierarchical employment of DFT/CMD/FEM simulations, thus expanding the capability for computational design of novel nanostructures.

Locations

  • Materials Horizons - View
  • arXiv (Cornell University) - View - PDF
  • DipĆ²sit Digital de Documents de la UAB (Universitat AutĆ²noma de Barcelona) - View - PDF
  • DIGITAL.CSIC (Spanish National Research Council (CSIC)) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials 2024 Zheyong Fan
Yang Xiao
Yanzhou Wang
Penghua Ying
Shunda Chen
Haikuan Dong
+ Combining linear-scaling quantum transport and machine-learning molecular dynamics to study thermal and electronic transports in complex materials 2023 Zheyong Fan
Yang Xiao
Yanzhou Wang
Penghua Ying
Shunda Chen
Haikuan Dong
+ PDF Chat Million-atom heat transport simulations of polycrystalline graphene approaching first-principles accuracy enabled by neuroevolution potential on desktop GPUs 2025 Xiaoye Zhou
Yuqi Liu
Benrui Tang
Junyuan Wang
Haikuan Dong
Xiaoā€Ming Xiu
Shunda Chen
Zheyong Fan
+ PDF Chat Million-atom heat transport simulations of polycrystalline graphene approaching first-principles accuracy enabled by neuroevolution potential on desktop GPUs 2024 Xiaoye Zhou
Yuqi Liu
Bing Tang
Junyuan Wang
Haikuan Dong
Xiaoā€Ming Xiu
Shunda Chen
Zheyong Fan
+ Ab initio phonon transport across grain boundaries in graphene using machine learning based on small dataset 2019 Amirreza Hashemi
Ruiqiang Guo
Keivan Esfarjani
Sangyeop Lee
+ Machine Learning Interatomic Potential for Anisotropic Thermal Transport in Bulk Hexagonal Boron Nitride 2022 Jialin Tang
Qi Wang
Jiongzhi Zheng
Lin Cheng
Ruiqiang Guo
+ Thermal conductivity of h-BN monolayers using machine learning interatomic potential 2020 Yixuan Zhang
Chen Shen
Teng Long
Hongbin Zhang
+ PDF Chat Thermal conductivity of h-BN monolayers using machine learning interatomic potential 2020 Yixuan Zhang
Chen Shen
Teng Long
Hongbin Zhang
+ Atomic cluster expansion force field based thermal property material design with density functional theory level accuracy in non-equilibrium molecular dynamics calculations over sub-million atoms 2023 Takumi Araki
Shinnosuke Hattori
Toshio Nishi
Yoshihiro Kudo
+ PDF Chat <i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset 2022 Amirreza Hashemi
Ruiqiang Guo
Keivan Esfarjani
Sangyeop Lee
+ PDF Chat On-the-fly training of polynomial machine learning potentials in computing lattice thermal conductivity 2024 Atsushi Togo
Atsuto Seko
+ Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics 2024 Xiguang Wu
Wenjiang Zhou
Haikuang Dong
Penghua Ying
Yanzhou Wang
Bai Song
Zheyong Fan
Shiyun Xiong
+ Lattice Thermal Conductivity of 2D Nanomaterials: A Simple Semi-Empirical Approach 2023 Raphael M. Tromer
Isaac M. FĆ©lix
Luiz Felipe C. Pereira
M. G. E. da Luz
L. A. Ribeiro Junior
Douglas S. GalvĆ£o
+ PDF Chat Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics 2024 Xiguang Wu
Wenjiang Zhou
Haikuan Dong
Penghua Ying
Yanzhou Wang
Bai Song
Zheyong Fan
Shiyun Xiong
+ PDF Chat Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates 2022 Jing Wu
E Zhou
Huang An
Hongbin Zhang
Ming Hu
Guangzhao Qin
+ PDF Chat On-the-fly training of polynomial machine learning potentials in computing lattice thermal conductivity 2024 Atsushi Togo
Atsuto Seko
+ Machine Learning Models for the Lattice Thermal Conductivity Prediction of Inorganic Materials 2019 Lihua Chen
Tran Doan Huan
Rohit Batra
Chiho Kim
Rampi Ramprasad
+ Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates 2022 Jing Wu
E Zhou
An Huang
Hongbin Zhang
Ming Hu
Guangzhao Qin
+ PDF Chat Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution 2020 Bohayra Mortazavi
Evgeny V. Podryabinkin
Ivan S. Novikov
Timon Rabczuk
Xiaoying Zhuang
Alexander V. Shapeev
+ Machine learning enables robust prediction of thermal boundary conductance of 2D substrate interfaces 2023 Cameron J. Foss
Zlatan AkŔamija

Works That Cite This (21)

Action Title Year Authors
+ PDF Chat Structural, electronic, thermal and mechanical properties of C60-based fullerene two-dimensional networks explored by first-principles and machine learning 2023 Bohayra Mortazavi
+ PDF Chat Phonon modes contribution in thermal rectification in graphene-C3B junction: A molecular dynamics study 2021 Leila Kiani
J. Hasanzadeh
Farrokh Yousefi
P. Azimi Anaraki
+ PDF Chat Electronic transport in copperā€“graphene composites 2023 Kashi N. Subedi
K. Nepal
C. Ugwumadu
Keerti Kappagantula
D. A. Drabold
+ PDF Chat The MLIP package: moment tensor potentials with MPI and active learning 2020 Ivan S. Novikov
Konstantin Gubaev
Evgeny V. Podryabinkin
Alexander V. Shapeev
+ PDF Chat Heat transfer in strained twin graphene: A non-equilibrium molecular dynamics simulation 2020 Fatemeh Rezaee
Farrokh Yousefi
Farhad Khoeini
+ PDF Chat Molecular dynamic simulation on the density of titanium dioxide and silver water-based nanofluids using ternary mixture model 2021 Mohammad Mahdi Heyhat
Mohsen Abbasi
Ali Rajabpour
+ PDF Chat Thermo-mechanical properties of nitrogenated holey graphene (C2N): A comparison of machine-learning-based and classical interatomic potentials 2021 Saeed Arabha
Ali Rajabpour
+ PDF Chat Lattice thermal conductivity and Young's modulus of XN<sub>4</sub> (X = Be, Mg and Pt) 2D materials using machine learning interatomic potentials 2023 Khashayar Ghorbani
Pedram Mirchi
Saeed Arabha
Ali Rajabpour
Sebastian Volz
+ PDF Chat Anomalous tensile strength and thermal expansion, and low thermal conductivity in wide band gap boron monoxide monolayer 2023 Bohayra Mortazavi
Fazel Shojaei
Fei Ding
Xiaoying Zhuang
+ Heat and mass transfer in high aspect slot structures 2021 Š˜. Š¤. Š“Š¾Š»Š¾Š²Š½ŠµŠ²
Yu. V. Shevtsov
Boris Šœ. Kuchumov
Š˜. Šš. Š˜Š³ŃƒŠ¼ŠµŠ½Š¾Š²

Works Cited by This (29)

Action Title Year Authors
+ PDF Chat Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide 2013 Arend M. van der Zande
Pinshane Y. Huang
Daniel Chenet
Timothy C. Berkelbach
YuMeng You
Gwanā€Hyoung Lee
Tony F. Heinz
David R. Reichman
David A. Muller
James Hone
+ PDF Chat Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy 2011 Jaeā€Ung Lee
Duhee Yoon
Hakseong Kim
Sang Wook Lee
Hyeonsik Cheong
+ PDF Chat Multiscale modeling of heat conduction in graphene laminates 2014 Bohayra Mortazavi
Timon Rabczuk
+ PDF Chat Crystal structure prediction using <i>ab initio</i> evolutionary techniques: Principles and applications 2006 Artem R. Oganov
Colin W. Glass
+ PDF Chat Semimetallic Two-Dimensional Boron Allotrope with Massless Dirac Fermions 2014 Xiangā€Feng Zhou
Xiao Dong
Artem R. Oganov
Qiang Zhu
Yongjun Tian
Huiā€Tian Wang
+ PDF Chat Thermal Conductivity of Graphene in Corbino Membrane Geometry 2010 C. Faugeras
Blaise Faugeras
M. Orlita
M. Potemski
Rahul R. Nair
A. K. GeĒm
+ PDF Chat Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene 2010 Lucas Lindsay
David Broido
+ PDF Chat Length-dependent thermal conductivity in suspended single-layer graphene 2014 Xiangfan Xu
Luiz Felipe C. Pereira
Yu Wang
Jing Wu
Kaiwen Zhang
Xiangming Zhao
Sukang Bae
Cong Tinh Bui
Rongguo Xie
John T. L. Thong
+ PDF Chat Dimensional crossover of thermal transport in few-layer graphene 2010 Suchismita Ghosh
Wenzhong Bao
Denis L. Nika
Samia Subrina
Evghenii P. Pokatilov
Chun Ning Lau
Alexander A. Balandin
+ PDF Chat Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers 2013 Sina Najmaei
Zheng Liu
Wu Zhou
Xiaolong Zou
Gang Shi
Sidong Lei
Boris I. Yakobson
Juan Carlos Idrobo
Pulickel M. Ajayan
Jun Lou