Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case

Type: Article

Publication Date: 2006-10-06

Citations: 733

DOI: https://doi.org/10.1007/s00222-006-0011-4

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View
  • Inventiones mathematicae - View

Similar Works

Action Title Year Authors
+ Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation 2006 Carlos E. Kenig
Franck Merle
+ PDF Chat Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation 2008 Carlos E. Kenig
Frank Merle
+ PDF Chat Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space 2015 Valeria Banica
Thomas Duyckaerts
+ PDF Chat Global Well-posedness and Scattering for the Focusing Energy-critical Inhomogeneous Nonlinear Schr\"odinger Equation with Non-radial Data 2024 Dongjin Park
+ Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global scattering bounds 2020 Aynur Bulut
+ Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrodinger equation for radial data 2004 Terence Tao
+ Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case 2008 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space 2014 Valeria Banica
Thomas Duyckaerts
+ Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. 2005 Terence Tao
+ Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R^3 2004 Jim Colliander
Mark Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions 2007 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space 2014 Valeria Banica
Thomas Duyckaerts
+ PDF Chat The Radial Defocusing Nonlinear Schrödinger Equation in Three Space Dimensions 2014 Jason Murphy
+ The radial defocusing nonlinear Schrödinger equation in three space dimensions 2014 Jason Murphy
+ The radial defocusing nonlinear Schrödinger equation in three space dimensions 2014 Jason Murphy
+ Probabilistic well-posedness of the mass-critical NLS with radial data below <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2019 Gyeongha Hwang
+ Stability of energy-critical nonlinear Schrödinger equations in high dimensions 2005 Terence Tao
Monica Vişan
+ Global well-posedness for the radial, defocusing, nonlinear wave equation for $3 &lt; p &lt; 5$ 2018 Benjamin Dodson
+ Nonlinear Schrodinger Equations at Non-Conserved Critical Regularity 2014 Jason Murphy
+ Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions 2006 Terence Tao
Monica Vişan
Xiaoyi Zhang