Sparse Recovery From Combined Fusion Frame Measurements

Type: Article

Publication Date: 2011-05-25

Citations: 87

DOI: https://doi.org/10.1109/tit.2011.2143890

Abstract

Sparse representations have emerged as a powerful tool in signal and information processing, culminated by the success of new acquisition and processing techniques such as Compressed Sensing (CS). Fusion frames are very rich new signal representation methods that use collections of subspaces instead of vectors to represent signals. This work combines these exciting fields to introduce a new sparsity model for fusion frames. Signals that are sparse under the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals using standard CS. The combination provides a promising new set of mathematical tools and signal models useful in a variety of applications. With the new model, a sparse signal has energy in very few of the subspaces of the fusion frame, although it does not need to be sparse within each of the subspaces it occupies. This sparsity model is captured using a mixed l1/l2 norm for fusion frames. A signal sparse in a fusion frame can be sampled using very few random projections and exactly reconstructed using a convex optimization that minimizes this mixed l1/l2 norm. The provided sampling conditions generalize coherence and RIP conditions used in standard CS theory. It is demonstrated that they are sufficient to guarantee sparse recovery of any signal sparse in our model. Moreover, a probabilistic analysis is provided using a stochastic model on the sparse signal that shows that under very mild conditions the probability of recovery failure decays exponentially with increasing dimension of the subspaces.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ Sparse Recovery of Fusion Frame Structured Signals 2018 UlaƟ Ayaz
+ Local sparsity and recovery of fusion frames structured signals 2016 Roza Aceska
Jean-Luc Bouchot
Shidong Li
+ Uniform recovery of fusion frame structured sparse signals 2014 UlaƟ Ayaz
Sjoerd Dirksen
Holger Rauhut
+ Uniform recovery of fusion frame structured sparse signals 2014 UlaƟ Ayaz
Sjoerd Dirksen
Holger Rauhut
+ Uniform recovery of fusion frame structured sparse signals 2016 UlaƟ Ayaz
Sjoerd Dirksen
Holger Rauhut
+ Unified Theory for Recovery of Sparse Signals in a General Transform Domain 2016 Kiryung Lee
Yanjun Li
Kyong Hwan Jin
Jong Chul Ye
+ Unified Theory for Recovery of Sparse Signals in a General Transform Domain 2016 Kiryung Lee
Yanjun Li
Kyong Hwan Jin
Jong Chul Ye
+ PDF Chat Unified Theory for Recovery of Sparse Signals in a General Transform Domain 2018 Kiryung Lee
Yanjun Li
Kyong Hwan Jin
Jong Chul Ye
+ Theory and Applications of Compressed Sensing 2012 Gitta Kutyniok
+ Theory and Applications of Compressed Sensing 2012 Gitta Kutyniok
+ Compressed Sensing: Theory and Applications 2012 Gitta Kutyniok
+ A Survey of Compressed Sensing 2015 Holger Boche
Robert Calderbank
Gitta Kutyniok
Jan VybĂ­ral
+ Sparse Signal Processing with Frame Theory 2012 Dustin G. Mixon
+ A Survey on Compressive Sensing: Classical Results and Recent Advancements 2019 Ahmad Mousavi
Mehdi Rezaee
Ramin Ayanzadeh
+ PDF Chat Sparse Recovery for Overcomplete Frames: Sensing Matrices and Recovery Guarantees 2024 Xuemei Chen
Christian KĂŒmmerle
Rongrong Wang
+ PDF Chat Sparse signal recovery in Hilbert spaces 2012 Graeme Pope
Helmut Bölcskei
+ Sparse Signal Recovery in Hilbert Spaces 2012 Graeme Pope
Helmut Bölcskei
+ Sparse Signal Recovery in Hilbert Spaces 2012 Graeme Pope
Helmut Bölcskei
+ Recovery of Sparsely Corrupted Signals 2011 Christoph Studer
Patrick Kuppinger
Graeme Pope
Helmut Bölcskei
+ PDF Chat Recovery of Sparsely Corrupted Signals 2011 Christoph Studer
Patrick Kuppinger
Graeme Pope
Helmut Bölcskei

Works Cited by This (24)

Action Title Year Authors
+ PDF Chat Recovery of Short, Complex Linear Combinations Via<tex>$ell _1$</tex>Minimization 2005 Joel A. Tropp
+ PDF Chat The Concentration of Measure Phenomenon 2005 Michel Ledoux
+ From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images 2009 Alfred M. Bruckstein⋆
David L. Donoho
Michael Elad
+ Sparsest solutions of underdetermined linear systems via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math>-minimization for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>q</mml:mi><mml:mo>â©œ</mml:mo><mml:mn>1</mml:mn></mml:math> 2008 Simon Foucart
Ming‐Jun Lai
+ Compressed sensing and best 𝑘-term approximation 2008 Albert Cohen
Wolfgang Dahmen
Ronald DeVore
+ Sparse Approximate Solutions to Linear Systems 1995 B. K. Natarajan
+ Fusion frames and distributed processing 2007 Peter G. Casazza
Gitta Kutyniok
Shidong Li
+ PDF Chat Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints 2008 Massimo Fornasier
Holger Rauhut
+ A note on guaranteed sparse recovery via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-minimization 2009 Simon Foucart
+ PDF Chat Matching Pursuit With Block Incoherent Dictionaries 2007 Lorenzo Peotta
Pierre Vandergheynst