Coherence properties of the 0-<i>π</i>qubit

Type: Article

Publication Date: 2018-03-19

Citations: 85

DOI: https://doi.org/10.1088/1367-2630/aab7cd

Abstract

Superconducting circuits rank among some of the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit (Brooks et al 2013 Phys. Rev. A 87 52306) promises increased protection from spontaneous relaxation and dephasing. In this paper we present a detailed theoretical study of the coherence properties of the 0-π device, investigate relevant decoherence channels, and show estimates for achievable coherence times in multiple parameter regimes. In our analysis, we include disorder in circuit parameters, which results in the coupling of the qubit to a low-energy, spurious harmonic mode. We analyze the effects of such coupling on decoherence, in particular dephasing due to photon shot noise, and outline how such a noise channel can be mitigated by appropriate parameter choices. In the end we find that the 0-π qubit performs well and may become an attractive candidate for the implementation of the next-generation superconducting devices for uses in quantum computing and information.

Locations

  • New Journal of Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Control and coherence time enhancement of the 0–<i>π</i> qubit 2019 Agustín Di Paolo
Arne L. Grimsmo
Peter Groszkowski
Jens Koch
Alexandre Blais
+ PDF Chat Inducing nontrivial qubit coherence through a controlled dispersive environment 2019 Wallace S. Teixeira
F. Nicacio
F. L. Semião
+ PDF Chat Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit 2018 Marios Kounalakis
Christian Dickel
Alessandro Bruno
Nathan K. Langford
Gary A. Steele
+ PDF Chat Topics in Quantum Dynamics and Coherence for Quantum Information Processing 2010 Vladimir Privman
+ PDF Chat Coherence control for qubits 2003 K. M. Fonseca-Romero
Sigmund Kohler
Peter Hänggi
+ PDF Chat Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits 2013 R. Barends
J. Kelly
A. Megrant
D. Sank
E. Jeffrey
Y. Chen
Yi Yin
B. Chiaro
J. Mutus
C. Neill
+ PDF Chat Dephasing Noise Simulation for Coherence-Generating Devices 2024 Roberto Salazar
Fereshte Shahbeigi
+ Multi-mode architectures for noise-resilient superconducting qubits 2022 Alessio Calzona
Matteo Carrega
+ PDF Chat Simulating the Quantum Rabi Model in Superconducting Qubits at Deep Strong Coupling 2024 Noureddine Rochdi
Atta Ur Rahman
R. Ahl Laamara
Mohamed Bennai
+ Protecting quantum resources via qubit frequency modulation 2018 Ali Mortezapour
Rosario Lo Franco
+ Effective qubit dephasing induced by spectator-qubit relaxation 2022 Petar Jurcevic
Luke C. G. Govia
+ PDF Chat The upside of noise: engineered dissipation as a resource in superconducting circuits 2017 Eliot Kapit
+ PDF Chat The flux qubit revisited to enhance coherence and reproducibility 2016 Fei Yan
Simon Gustavsson
Archana Kamal
Jeffrey Birenbaum
Adam Sears
David Hover
Ted Gudmundsen
Danna Rosenberg
Gabriel Samach
Steven Weber
+ Spectral kissing and its dynamical consequences in the squeeze-driven Kerr oscillator 2022 Jorge Chávez-Carlos
Talía L. M. Lezama
Rodrigo G. Cortiñas
Jayameenakshi Venkatraman
Michel Devoret
Victor S. Batista
F. Pérez‐Bernal
Lea F. Santos
+ PDF Chat Spectral kissing and its dynamical consequences in the squeeze-driven Kerr oscillator 2023 Jorge Chávez-Carlos
Talía L. M. Lezama
Rodrigo G. Cortiñas
Jayameenakshi Venkatraman
Michel Devoret
Víctor S. Batista
F. Pérez‐Bernal
Lea F. Santos
+ Coherent Dynamics of the Off-Diagonal Spin-Boson Model in the Ultra-Strong Coupling Regime 2020 Nirmalendu Acharyya
Martin Richter
Benjamin P. Fingerhut
+ Efficient protocol for qubit initialization with a tunable environment 2016 Jani Tuorila
Matti Partanen
Tapio Ala-Nissilä
Mikko Möttönen
+ Efficient protocol for qubit initialization with a tunable environment 2016 Jani Tuorila
Matti Partanen
Tapio Ala-Nissilä
Mikko Möttönen
+ PDF Chat High-fidelity controlled-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>σ</mml:mi><mml:mi>Z</mml:mi></mml:msup></mml:math>gate for resonator-based superconducting quantum computers 2013 Joydip Ghosh
Andrei Galiautdinov
Zhongyuan Zhou
Alexander N. Korotkov
John M. Martinis
Michael R. Geller
+ PDF Chat <i>Colloquium</i>: Quantum coherence as a resource 2017 Alexander Streltsov
Gerardo Adesso
Martin B. Plenio

Works That Cite This (67)

Action Title Year Authors
+ Analysis of arbitrary superconducting quantum circuits accompanied by a Python package: SQcircuit 2022 Taha Rajabzadeh
Zhaoyou Wang
Nathan Lee
Takuma Makihara
Yudan Guo
Amir H. Safavi-Naeini
+ PDF Chat Homological Quantum Rotor Codes: Logical Qubits from Torsion 2024 Christophe Vuillot
Alessandro Ciani
Barbara M. Terhal
+ PDF Chat Moving beyond the Transmon: Noise-Protected Superconducting Quantum Circuits 2021 András Gyenis
Agustín Di Paolo
Jens Koch
Alexandre Blais
Andrew Houck
David Schuster
+ PDF Chat Flux-tunable regimes and supersymmetry in twisted cuprate heterostructures 2024 Alessandro Coppo
Luca Chirolli
Nicola Poccia
U. Vool
Valentina Brosco
+ PDF Chat Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires 2021 Marco Colangelo
Di Zhu
Daniel F. Santavicca
Brenden Butters
Joshua C. Bienfang
Karl K. Berggren
+ Robust and efficient algorithms for high-dimensional black-box quantum optimization 2019 Zhaoqi Leng
Pranav Mundada
Saeed Ghadimi
Andrew Houck
+ Set of Holonomic and Protected Gates on Topological Qubits for Realistic Quantum Computer 2019 Andrey R. Klots
L. B. Ioffe
+ Spectrum and coherence properties of the current-mirror qubit 2019 Daniel Weiss
Andy C. Y. Li
David Ferguson
Jens Koch
+ PDF Chat Analytic Design of Accelerated Adiabatic Gates in Realistic Qubits: General Theory and Applications to Superconducting Circuits 2021 F. Setiawan
Peter Groszkowski
Hugo Ribeiro
Aashish A. Clerk
+ PDF Chat Role of anomalous symmetry in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>0</mml:mn><mml:mtext>−</mml:mtext><mml:mi>π</mml:mi></mml:math> qubits 2022 I. L. Egusquiza
A. Iñiguez
E. Rico
A. Villarino

Works Cited by This (35)

Action Title Year Authors
+ PDF Chat Microwave Characterization of Josephson Junction Arrays: Implementing a Low Loss Superinductance 2012 Nicholas Masluk
Ioan M. Pop
Archana Kamal
Zlatko Minev
Michel Devoret
+ PDF Chat Protected Josephson Rhombus Chains 2014 M. T. Bell
Joshua Paramanandam
L. B. Ioffe
M. E. Gershenson
+ PDF Chat Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms 2012 Chad Rigetti
Jay Gambetta
Stefano Poletto
B. L. T. Plourde
Jerry M. Chow
Antonio Córcoles
John A. Smolin
Seth Merkel
John Rozen
George Keefe
+ PDF Chat Charge-insensitive qubit design derived from the Cooper pair box 2007 Jens Koch
Terri M. Yu
Jay Gambetta
Andrew Houck
David Schuster
Johannes Majer
Alexandre Blais
Michel Devoret
S. M. Girvin
Robert Schoelkopf
+ PDF Chat Multilevel quantum description of decoherence in superconducting qubits 2004 Guido Burkard
R. H. Koch
David P. DiVincenzo
+ PDF Chat Protected gates for superconducting qubits 2013 Peter Brooks
Alexei Kitaev
John Preskill
+ PDF Chat Superconducting nanocircuits for topologically protected qubits 2008 S. P. Gladchenko
David Olaya
Eva Dupont-Ferrier
Benoît Douçot
L. B. Ioffe
M. E. Gershenson
+ PDF Chat Magnetism in SQUIDs at Millikelvin Temperatures 2008 S. Sendelbach
David Hover
A. Kittel
Michael Mück
John M. Martinis
R. McDermott
+ PDF Chat Purcell effect with microwave drive: Suppression of qubit relaxation rate 2014 Eyob A. Sete
Jay Gambetta
Alexander N. Korotkov
+ PDF Chat Decoherence of Flux Qubits due to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>f</mml:mi></mml:math>Flux Noise 2006 Fumiki Yoshihara
K. Harrabi
A. O. Niskanen
Yasunobu Nakamura
Jaw-Shen Tsai