Models of gradient type with sub-quadratic actions

Type: Article

Publication Date: 2019-07-01

Citations: 12

DOI: https://doi.org/10.1063/1.5046860

Abstract

We consider models of gradient type, which are the densities of a collection of real-valued random variables ϕ ≔ {ϕx: x ∈ Λ} given by Z−1 exp(−∑j∼kV(ϕj − ϕk)). We focus our study on the case that V(∇ϕ)=[1+(∇ϕ)2]α with 0 < α < 1/2, which is a nonconvex potential. We introduce an auxiliary field tjk for each edge and represent the model as the marginal of a model with log-concave density. Based on this method, we prove that finite moments of the fields [v⋅ϕ]p are bounded uniformly in the volume. This leads to the existence of infinite volume measures. Also, every translation invariant, ergodic infinite volume Gibbs measure for the potential V above scales to a Gaussian free field.

Locations

  • Journal of Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Scaling limit for a class of gradient fields with nonconvex potentials 2010 Marek Biskup
Herbert Spohn
+ Models of gradient type with sub-quadratic actions and their scaling limits 2017 Zichun Ye
+ Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees 2020 Florian Henning
Christof Kuelske
+ PDF Chat Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees 2021 Florian Henning
Christof Külske
+ Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees 2020 Florian Henning
Christof Kuelske
+ Free diffusions and Matrix models with strictly convex interaction 2007 Alice Guionnet
Dimitri Shlyakhtenko
+ PDF Chat Infinite-volume states with irreducible localization sets for gradient models on trees 2023 Alberto Abbondandolo
Florian Henning
Christof Kuelske
Pietro Majer
+ An isomorphism theorem for Ginzburg-Landau interface models and scaling limits 2022 Jean‐Dominique Deuschel
Pierre-François Rodríguez
+ Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences 2022 Alberto González-Sanz
Jean–Michel Loubes
Jonathan Niles‐Weed
+ Local central limit theorem for gradient field models 2022 Wei Wu
+ Concentration inequalities for log-concave distributions with applications to random surface fluctuations 2020 Alexander Magazinov
Ron Peled
+ PDF Chat Entropy factorization via curvature 2024 Pietro Caputo
Justin Salez
+ PDF Chat Isotropic log-concave measures 2014 Silouanos Brazitikos
Apostolos Giannopoulos
Petros Valettas
Beatrice-Helen Vritsiou
+ Quantitative contraction rates for Sinkhorn algorithm: beyond bounded costs and compact marginals 2023 Giovanni Conforti
Alain Durmus
Giacomo Greco
+ The Hessian of surface tension characterises scaling limit of gradient models with non-convex energy 2023 Stefan Adams
Andreas Koller
+ PDF Chat Concentration inequalities for log-concave distributions with applications to random surface fluctuations 2022 Alexander Magazinov
Ron Peled
+ PDF Chat Heterogeneous gradient flows in the topology of fibered optimal transport 2023 Jan Peszek
David Poyato
+ Bounded size biased couplings, log concave distributions and concentration of measure for occupancy models 2014 Jay Bartroff
Larry B. Goldstein
Ümi̇t Işlak
+ Bounded size biased couplings, log concave distributions and concentration of measure for occupancy models 2014 Jay Bartroff
Larry Goldstein
Ümi̇t Işlak
+ PDF Chat A Ray–Knight theorem for $$\nabla \phi $$ interface models and scaling limits 2024 Jean‐Dominique Deuschel
Pierre‐François Rodriguez

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat Невероятностные меры Гиббса для HC-модели со счетным числом состояний для графа типа "жезл" на дереве Кэли 2022 Рустамжон Махмудович Хакимов
Р. М. Хакимов
Мухторжон Турсунмухаммад угли Махаммадалиев
Мухторжон Турсунмухаммад угли Махаммадалиев
+ PDF Chat Gibbs Measures for HC-Model with a Cuountable Set of Spin Values on a Cayley Tree 2023 Р. М. Хакимов
M. T. Makhammadaliev
U. A. Rozikov
+ PDF Chat Меры Гиббса для модели HC-Блюма-Капеля со счетным числом состояний на дереве Кэли 2022 Насир Набиевич Ганиходжаев
U. A. Rozikov
N. M. Khatamov
+ PDF Chat Gibbs measures for a Hard-Core model with a countable set of states 2024 U. A. Rozikov
R. M. Khakimov
M. T. Makhammadaliev
+ Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree 2022 Р. М. Хакимов
M. T. Makhammadaliev
+ Weakly periodic gibbs measures for the HC model with a countable set of spin values 2024 M. T. Makhammadaliev
+ PDF Chat Concentration inequalities for log-concave distributions with applications to random surface fluctuations 2022 Alexander Magazinov
Ron Peled
+ PDF Chat Phase transitions for a class of gradient fields 2021 Simon Buchholz
+ Phase transitions for a class of gradient fields 2019 Simon Buchholz
+ Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree 2022 Насир Набиевич Ганиходжаев
U. A. Rozikov
N. M. Khatamov