Type: Article
Publication Date: 2019-12-21
Citations: 23
DOI: https://doi.org/10.2140/pjm.2019.303.1
We explore the distinctions between $L^p$ convergence of metric tensors on a fixed Riemannian manifold versus Gromov-Hausdorff, uniform, and intrinsic flat convergence of the corresponding sequence of metric spaces. We provide a number of examples which demonstrate these notions of convergence do not agree even for two dimensional warped product manifolds with warping functions converging in the $L^p$ sense. We then prove a theorem which requires $L^p$ bounds from above and $C^0$ bounds from below on the warping functions to obtain enough control for all these limits to agree.