Type: Article
Publication Date: 2019-03-01
Citations: 17
DOI: https://doi.org/10.1063/1.5080086
Vibrations in cryocoolers are a recurrent concern to the end user. They appear in different parts of the acoustic spectrum depending on the refrigerator type, Gifford McMahon or pulse-tube, and with a variable coupling strength to the physical system under interest. Here, we use the piezospectroscopic effect in rare-earth doped crystals at a low temperature as a high resolution, contact-less probe for the vibrations. With this optical spectroscopic technique, we obtain and analyze the vibration spectrum up to 700 kHz of a 2 kW pulse-tube cooler. We attempt an absolute calibration based on known experimental parameters to make our method partially quantitative and to provide a possible comparison with other well-established techniques.