Sumset and Inverse Sumset Theory for Shannon Entropy

Type: Article

Publication Date: 2010-01-22

Citations: 87

DOI: https://doi.org/10.1017/s0963548309990642

Abstract

Let $G = (G,+)$ be an additive group. The sumset theory of Pl\"unnecke and Ruzsa gives several relations between the size of sumsets $A+B$ of finite sets $A, B$, and related objects such as iterated sumsets $kA$ and difference sets $A-B$, while the inverse sumset theory of Freiman, Ruzsa, and others characterises those finite sets $A$ for which $A+A$ is small. In this paper we establish analogous results in which the finite set $A \subset G$ is replaced by a discrete random variable $X$ taking values in $G$, and the cardinality $|A|$ is replaced by the Shannon entropy $\mathrm{Ent}(X)$. In particular, we classify the random variable $X$ which have small doubling in the sense that $\mathrm{Ent}(X_1+X_2) = \mathrm{Ent}(X)+O(1)$ when $X_1,X_2$ are independent copies of $X$, by showing that they factorise as $X = U+Z$ where $U$ is uniformly distributed on a coset progression of bounded rank, and $\mathrm{Ent}(Z) = O(1)$. When $G$ is torsion-free, we also establish the sharp lower bound $\mathrm{Ent}(X+X) \geq \mathrm{Ent}(X) + {1/2} \log 2 - o(1)$, where $o(1)$ goes to zero as $\mathrm{Ent}(X) \to \infty$.

Locations

  • Combinatorics Probability Computing - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Combinatorics Probability Computing - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Combinatorics Probability Computing - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Sumsets and entropy revisited 2023 Ben Green
Freddie Manners
Terence Tao
+ PDF Chat On an entropic analogue of additive energy 2024 Marcel K. Goh
+ PDF Sumsets and entropy revisited 2024 Ben Green
Freddie Manners
Terence Tao
+ PDF Chat Sumset and Inverse Sumset Inequalities for Differential Entropy and Mutual Information 2014 Ioannis Kontoyiannis
Mokshay Madiman
+ PDF Chat Entropy versions of additive inequalities 2018 Alberto Espuny DĂ­az
Oriol Serra
+ PDF On a Sumset Conjecture of Erdős 2014 Mauro Di Nasso
Isaac Goldbring
Renling Jin
Steven Leth
Martino Lupini
Karl Mahlburg
+ PDF Sums and differences of correlated random sets 2014 Thao Do
Archit Kulkarni
Steven J. Miller
David Moon
Jake Wellens
+ Iterated Sumsets and Setpartitions 2017 David J. Grynkiewicz
+ Iterated Sumsets and Setpartitions 2017 David J. Grynkiewicz
+ Prescribing the binary digits of squarefree numbers and quadratic residues 2016 Rainer Dietmann
Christian Elsholtz
Igor E. Shparlinski
+ Prescribing the binary digits of squarefree numbers and quadratic residues 2016 Rainer Dietmann
Christian Elsholtz
Igor E. Shparlinski
+ Additive Combinatorics 2006 Terence Tao
Van H. Vu
+ PDF Khovanskii's theorem and effective results on sumset structure 2021 Michael Curran
Leo Goldmakher
+ Sums and differences of correlated random sets 2014 Thao Do
Archit Kulkarni
Steven J. Miller
David Moon
Jake Wellens
+ PDF Sums and differences of finite sets 2007 Katalin Gyarmati
François Hennecart
Imre Z. Ruzsa
+ PDF Chat Iterated sumsets and setpartitions 2019 David J. Grynkiewicz
+ Entropy versions of additive inequalities 2018 Alberto Espuny DĂ­az
Oriol Serra
+ Entropy versions of additive inequalities 2018 Alberto Espuny DĂ­az
Oriol Serra
+ Bounding multiplicative energy by the sumset 2009 JĂłzsef Solymosi
+ PDF Chat Relative sizes of iterated sumsets 2024 Noah Kravitz