The Inflation Technique Completely Solves the Causal Compatibility Problem

Type: Article

Publication Date: 2020-09-03

Citations: 33

DOI: https://doi.org/10.1515/jci-2018-0008

Abstract

Abstract The causal compatibility question asks whether a given causal structure graph — possibly involving latent variables — constitutes a genuinely plausible causal explanation for a given probability distribution over the graph’s observed categorical variables. Algorithms predicated on merely necessary constraints for causal compatibility typically suffer from false negatives, i.e. they admit incompatible distributions as apparently compatible with the given graph. In 10.1515/jci-2017-0020 , one of us introduced the inflation technique for formulating useful relaxations of the causal compatibility problem in terms of linear programming. In this work, we develop a formal hierarchy of such causal compatibility relaxations. We prove that inflation is asymptotically tight, i.e., that the hierarchy converges to a zero-error test for causal compatibility. In this sense, the inflation technique fulfills a longstanding desideratum in the field of causal inference. We quantify the rate of convergence by showing that any distribution which passes the n th -order inflation test must be $\begin{array}{} \displaystyle {O}{\left(n^{{{-}{1}}/{2}}\right)} \end{array}$ -close in Euclidean norm to some distribution genuinely compatible with the given causal structure. Furthermore, we show that for many causal structures, the (unrelaxed) causal compatibility problem is faithfully formulated already by either the first or second order inflation test.

Locations

  • Journal of Causal Inference - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The inflation technique solves completely the classical inference problem 2017 Miguel Navascués
Elie Wolfe
+ PDF Chat The Inflation Technique for Causal Inference with Latent Variables 2019 Elie Wolfe
Robert W. Spekkens
T. A. Fritz
+ Inflation: a Python library for classical and quantum causal compatibility 2022 Emanuel-Cristian Boghiu
Elie Wolfe
Alejandro Pozas-Kerstjens
+ PDF Chat Inflation: a Python library for classical and quantum causal compatibility 2023 Emanuel-Cristian Boghiu
Elie Wolfe
Alejandro Pozas-Kerstjens
+ PDF Chat Quantum Inflation: A General Approach to Quantum Causal Compatibility 2021 Elie Wolfe
Alejandro Pozas-Kerstjens
Matan Grinberg
Denis Rosset
Antonio Acín
Miguel Navascués
+ A convergent inflation hierarchy for quantum causal structures 2021 Laurens T. Ligthart
Mariami Gachechiladze
David Groß
+ PDF Chat A Convergent Inflation Hierarchy for Quantum Causal Structures 2023 Laurens T. Ligthart
Mariami Gachechiladze
David Groß
+ PDF Chat Causal Discovery with Fewer Conditional Independence Tests 2024 Kirankumar Shiragur
Jiaqi Zhang
Caroline Uhler
+ PDF Chat Consistency of Neural Causal Partial Identification 2024 Jiyuan Tan
José Blanchet
Vasilis Syrgkanis
+ Self-Compatibility: Evaluating Causal Discovery without Ground Truth 2023 Philipp M. Faller
Leena Chennuru Vankadara
Atalanti A. Mastakouri
Francesco Locatello
Dominik Janzing
+ PDF Chat Fully quantum inflation: quantum marginal problem constraints in the service of causal inference 2025 Isaac D. Smith
Elie Wolfe
Robert W. Spekkens
+ Asymptotic Causal Inference 2021 Sridhar Mahadevan
+ Measurement Dependence Inducing Latent Causal Models 2019 Alex Markham
Moritz Grosse‐Wentrup
+ A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models 2023 Alexander G. Reisach
Myriam Tami
Christof Seiler
Antoine Chambaz
Sebastian Weichwald
+ PDF Chat Discovering Fully Oriented Causal Networks 2021 Osman Mian
Alexander Marx
Jilles Vreeken
+ Discovering Fully Oriented Causal Networks 2021 Osman Mian
Alexander Marx
Jilles Vreeken
+ Assumption violations in causal discovery and the robustness of score matching 2023 Francesco Montagna
Atalanti A. Mastakouri
Elias Eulig
Nicoletta Noceti
Lorenzo Rosasco
Dominik Janzing
Bryon Aragam
Francesco Locatello
+ PDF Chat Comment: Strengthening Empirical Evaluation of Causal Inference Methods 2019 David Jensen
+ PDF Chat Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees 2024 Chengbo Qiu
Kai Yang
+ PDF Chat On the Complexity of Identification in Linear Structural Causal Models 2024 Julian Dörfler
Benito van der Zander
Markus Bläser
Maciej Liśkiewicz

Works That Cite This (26)

Action Title Year Authors
+ PDF Chat Quantum Nonlocality in Networks Can Be Demonstrated with an Arbitrarily Small Level of Independence between the Sources 2020 Ivan Šupić
Jean-Daniel Bancal
Nicolas Brunner
+ The inflation hierarchy and the polarization hierarchy are complete for the quantum bilocal scenario 2023 Laurens T. Ligthart
David Groß
+ PDF Chat A neural network oracle for quantum nonlocality problems in networks 2020 Tamás Kriváchy
Yu Cai
Daniel Cavalcanti
Arash Tavakoli
Nicolas Gisin
Nicolas Brunner
+ PDF Chat Analysing causal structures in generalised probabilistic theories 2020 Mirjam Weilenmann
Roger Colbeck
+ PDF Chat Constraints on nonlocality in networks from no-signaling and independence 2020 Nicolas Gisin
Jean-Daniel Bancal
Yu Cai
Patrick Rémy
Armin Tavakoli
Emmanuel Zambrini Cruzeiro
Sandu Popescu
Nicolas Brunner
+ PDF Chat Proofs of Network Quantum Nonlocality in Continuous Families of Distributions 2023 Alejandro Pozas-Kerstjens
Nicolas Gisin
Marc-Olivier Renou
+ PDF Chat Test of Genuine Multipartite Nonlocality 2022 Ya-Li Mao
Zheng-Da Li
Sixia Yu
Jingyun Fan
+ PDF Chat A Convergent Inflation Hierarchy for Quantum Causal Structures 2023 Laurens T. Ligthart
Mariami Gachechiladze
David Groß
+ PDF Chat Inflation: a Python library for classical and quantum causal compatibility 2023 Emanuel-Cristian Boghiu
Elie Wolfe
Alejandro Pozas-Kerstjens
+ PDF Chat The Inflation Technique for Causal Inference with Latent Variables 2019 Elie Wolfe
Robert W. Spekkens
T. A. Fritz