Eigenvalues of block structured asymmetric random matrices

Type: Article

Publication Date: 2015-10-01

Citations: 32

DOI: https://doi.org/10.1063/1.4931476

Abstract

We study the spectrum of an asymmetric random matrix with block structured variances. The rows and columns of the random square matrix are divided into $D$ partitions with arbitrary size (linear in $N$). The parameters of the model are the variances of elements in each block, summarized in $g\in\mathbb{R}^{D\times D}_+$. Using the Hermitization approach and by studying the matrix-valued Stieltjes transform we show that these matrices have a circularly symmetric spectrum, we give an explicit formula for their spectral radius and a set of implicit equations for the full density function. We discuss applications of this model to neural networks.

Locations

  • Journal of Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Spectral analysis of large block random matrices with rectangular blocks 2014 Xue Ding
+ Spectra of Random Block-Matrices and Products of Random Matrices 2008 Tamer Oraby
+ Spectral Statistics of Structured Random Matrices 2017
+ PDF Chat Eigenvalues of Random Symmetric Matrices 2007
+ PDF Chat Eigenvalues of Random Symmetric Matrices 2007
+ The eigenvalues of random symmetric matrices 1981 Zoltán Füredi
János Komlós
+ PDF Chat Eigenvalue spectra of large correlated random matrices 2016 Alexander Kuczala
Tatyana O. Sharpee
+ Ellipsoid Approximation Using Random Vectors 2005 Shahar Mendelson
Alain Pajor
+ PDF Chat Symmetric, Hankel-Symmetric, and Centrosymmetric Doubly Stochastic Matrices 2018 Richard A. Brualdi
Lei Cao
+ Symmetric, Hankel-symmetric, and Centrosymmetric Doubly Stochastic Matrices 2017 Richard Brualdi
Lei Cao
+ PDF Chat Structured Random Matrices 2017 Ramon van Handel
+ The Spectral Boundary of Block Structured Random Matrices 2024 Nirbhay Patil
Fabián Aguirre-López
Jean‐Philippe Bouchaud
+ THE STIELTJES TRANSFORM AND ITS ROLE IN EIGENVALUE BEHAVIOR OF LARGE DIMENSIONAL RANDOM MATRICES 2009 Jack W. Silverstein
+ PDF Chat Random incidence matrices: moments of the spectral density 2001 Michel Bauer
O. Golinelli
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ PDF Chat Norms of structured random matrices 2023 Radosław Adamczak
Joscha Prochno
Marta Strzelecka
Michał Strzelecki
+ Random block matrices and matrix orthogonal polynomials 2008 Holger Dette
Bettina Reuther
+ PDF Chat Random Block Matrices and Matrix Orthogonal Polynomials 2008 Holger Dette
Bettina Reuther
+ Spectra of large random matrices: asymptotic analysis of (bi)orthogonal polynomials and Toeplitz determinants. 2008 Maurice Duits