Equivariant Schrödinger maps in two spatial dimensions: The H2 target

Type: Article

Publication Date: 2016-05-10

Citations: 8

DOI: https://doi.org/10.1215/21562261-3478889

Abstract

We consider equivariant solutions for the Schrödinger map problem from R 2+1 to H 2 with finite energy and show that they are global in time and scatter.

Locations

  • Kyoto journal of mathematics - View - PDF
  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Equivariant Schrödinger maps in two spatial dimensions 2013 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
Daniel Tataru
+ Schrodinger Flow Near Harmonic Maps 2005 Stephen J. Gustafson
Ki‐Woon Kang
Tai‐Peng Tsai
+ Blow up dynamics for equivariant critical Schrödinger maps 2012 Galina Perelman
+ Global solutions for equivariant Schroedinger Maps 2012 Ioan Bejenaru
+ Schrödinger Maps and their associated Frame Systems 2006 Andrea R. Nahmod
Jalal Shatah
Luis Vega
Chongchun Zeng
+ A controlling norm for energy-critical Schr\"odinger maps 2013 Benjamin Dodson
Paul N. Smith
+ PDF Chat Near soliton evolution for $2$-equivariant Schr\"odinger Maps in two space dimensions 2024 Ioan Bejenaru
Mohandas Pillai
Daniel Tataru
+ A controlling norm for energy-critical Schrödinger maps 2013 Benjamin Dodson
Paul Smith
+ Equivariant heat and Schrödinger flows from Euclidean space to complex projective space 2018 James Fennell
+ Near Soliton Evolution for Equivariant Schrodinger Maps in Two Spatial Dimensions 2014 Ioan Bejenaru
Daniel Tataru
+ Equivariant heat and Schrödinger flows from Euclidean space to complex projective space 2018 James Fennell
+ PDF Chat Asymptotic stability of harmonic maps under the Schrödinger flow 2008 Stephen J. Gustafson
Kyungkeun Kang
Tai‐Peng Tsai
+ Asymptotic stability of harmonic maps under the Schrödinger flow 2006 Stephen J. Gustafson
Kyungkeun Kang
Tai‐Peng Tsai
+ PDF Chat Equivariant Schrödinger map flow on two dimensional hyperbolic space 2020 Jiaxi Huang
Youde Wang
Lifeng Zhao
+ Near soliton evolution for equivariant Schroedinger Maps in two spatial dimensions 2010 Ioan Bejenaru
Daniel Tataru
+ Near soliton evolution for equivariant Schroedinger Maps in two spatial dimensions 2010 Ioan Bejenaru
Daniel Tataru
+ PDF Chat Schrödinger maps 2013 Daniel Tataru
+ On Schrödinger maps from T1 to S2. 2013 Robert L. Jerrard
Didier Smets
+ On Schrödinger maps from T1 to S2. 2013 Robert L. Jerrard
Didier Smets
+ On Schrödinger maps from T1 to S2. 2013 Robert L. Jerrard
Didier Smets