A generalization of Strassen’s Positivstellensatz

Type: Article

Publication Date: 2020-09-03

Citations: 11

DOI: https://doi.org/10.1080/00927872.2020.1803344

Abstract

Strassen's Positivstellensatz is a powerful but little known theorem on preordered commutative semirings satisfying a boundedness condition similar to Archimedeanicity. It characterizes the relaxed preorder induced by all monotone homomorphisms to R+ in terms of a condition involving large powers. Here, we generalize and strengthen Strassen's result. As a generalization, we replace the boundedness condition by a polynomial growth condition; as a strengthening, we prove two further equivalent characterizations of the homomorphism-induced preorder in our generalized setting.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Communications in Algebra - View

Similar Works

Action Title Year Authors
+ A generalization of Strassen's Positivstellensatz and its application to large deviation theory 2018 T. A. Fritz
+ A local-global principle for preordered semirings and abstract Positivstellens\"atze 2020 T. A. Fritz
+ Abstract Vergleichsstellensätze for preordered semifields and semirings I 2020 T. A. Fritz
+ PDF Chat Abstract Vergleichsstellensätze for Preordered Semifields and Semirings I 2023 T. A. Fritz
+ Constructive proofs of some positivstellensätze for compact semialgebraic subsets of $\mathbb{R}^d$ 2012 Gennadiy Averkov
+ A Positivstellensatz which Preserves the Coupling Pattern of Variables 2006 Jean B. Lasserre
+ Abstract Vergleichsstellensätze for preordered semifields and semirings II 2021 T. A. Fritz
+ Positivstellensätze for Semirings 2022 Konrad Schmüdgen
Matthias Schötz
+ PDF Chat An algorithmic approach to Schmüdgen's Positivstellensatz 2002 Markus Schweighofer
+ A strongly non-Ramsey order type 1997 A. Hajnal
P. Komj�th
+ Combinatorial Properties of (Pre)-Semirings 2008
+ PDF Chat A Generalization of Strassen’s Theorem on Preordered Semirings 2021 Péter Vrana
+ PDF Chat Positivstellensätze for semirings 2023 Konrad Schmüdgen
Matthias Schötz
+ Semigroups and minimality in nearrings 2000 Giovanni Battista Ferrero
+ PDF Chat A characterization of well-orders 1981 Brian Scott
+ Posner’s theorems in semirings 2023 Swaminathan Ganesh
V. Selvan
+ Polynomial Constraints in Lattice-Ordered Rings 1982 Stuart Streinberg
+ A tropical Nullstellensatz 2005 Eugeniĭ Shustin
Zur Izhakian
+ A Ramsey theorem for partial orders with linear extensions 2014 Sławomir Solecki
Min Zhao
+ A Ramsey theorem for partial orders with linear extensions 2016 Sławomir Solecki
Min Zhao