$\alpha$-concave functions and a functional extension of mixed volumes

Type: Article

Publication Date: 2013-01-01

Citations: 11

DOI: https://doi.org/10.3934/era.2013.20.1

Abstract

Mixed volumes, which are the polarization of volume with respect tothe Minkowski addition, are fundamental objects in convexity. In thisnote we announce the construction of mixed integrals, which are functionalanalogs of mixed volumes. We build a natural addition operation $\oplus$on the class of quasi-concave functions, such that every class of$\alpha$-concave functions is closed under $\oplus$. We then definethe mixed integrals, which are the polarization of the integral withrespect to $\oplus$. We proceed to discuss the extension of various classic inequalitiesto the functional setting. For general quasi-concave functions, thisis done by restating those results in the language of rearrangementinequalities. Restricting ourselves to $\alpha$-concave functions,we state a generalization of the Alexandrov inequalities in theirmore familiar form.

Locations

  • Electronic Research Announcements - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Mixed integrals and related inequalities 2012 Vitali Milman
Liran Rotem
+ Mixed integrals and related inequalities 2012 Vitali Milman
Liran Rotem
+ Mixed integrals and related inequalities 2012 Vitali Milman
Liran Rotem
+ Functional Brunn-Minkowski Inequalities Induced by Polarity 2017 Shiri Artstein-Avidan
Dan I. Florentin
Alexander Segal
+ Log-Concave Functions 2017 Andrea Colesanti
+ Functional Brunn-Minkowski Inequalities Induced by Polarity 2017 Shiri Artstein-Avidan
Dan I. Florentin
Alexander Segal
+ PDF Chat Functional Brunn-Minkowski inequalities induced by polarity 2020 Shiri Artstein-Avidan
Dan I. Florentin
A. Śegal
+ A characterization of some mixed volumes via the Brunn-Minkowski inequality 2012 Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
+ A characterization of some mixed volumes via the Brunn-Minkowski inequality 2012 Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
+ Extension of Minkowski’s polarization result to quasi-concave functions and related geometric inequalities 2013 Vitali Milman
+ Valuations on convex bodies 1983 Peter McMullen
Rolf Schneider
+ PDF Chat A Characterization of Some Mixed Volumes via the Brunn–Minkowski Inequality 2012 Andrea Colesanti
Daniel Hug
Eugenia Saorín Gómez
+ Extension of the total mass of log-concave functions and related inequalities 2020 Fangwei Chen
Jianbo Fang
Miao Luo
Congli Yang
+ Quermassintegrals of quasi-concave functions and generalized Pr\'ekopa-Leindler inequalities 2012 Sergey G. Bobkov
Andrea Colesanti
Ilaria Fragalà
+ Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities 2012 Sergey G. Bobkov
Andrea Colesanti
Ilaria Fragalà
+ PDF Chat Quermassintegrals of quasi-concave functions and generalized Prékopa–Leindler inequalities 2013 S. G. Bobkov
Andrea Colesanti
Ilaria Fragalà
+ The area measure of log-concave functions and related inequalities 2011 Andrea Colesanti
Ilaria Fragala'
+ The area measure of log-concave functions and related inequalities 2011 Andrea Colesanti
Ilaria Fragalà
+ From Area Measures to Valuations 2020 Daniel Hug
Wolfgang Weil
+ Rogers–Shephard inequality for log-concave functions 2016 David Alonso‐Gutiérrez
Bernardo González Merino
Carlos Hugo Jiménez
Rafael Villa