Monodromy and local-global compatibility for<i>l</i>=<i>p</i>

Type: Article

Publication Date: 2014-10-21

Citations: 64

DOI: https://doi.org/10.2140/ant.2014.8.1597

Abstract

We strengthen the compatibility between local and global Langlands correspondences for GL_{n} when n is even and l=p. Let L be a CM field and \Pi\ a cuspidal automorphic representation of GL_{n}(\mathbb{A}_{L}) which is conjugate self-dual and regular algebraic. In this case, there is an l-adic Galois representation associated to \Pi, which is known to be compatible with local Langlands in almost all cases when l=p by recent work of Barnet-Lamb, Gee, Geraghty and Taylor. The compatibility was proved only up to semisimplification unless \Pi\ has Shin-regular weight. We extend the compatibility to Frobenius semisimplification in all cases by identifying the monodromy operator on the global side. To achieve this, we derive a generalization of Mokrane's weight spectral sequence for log crystalline cohomology.

Locations

  • Algebra & Number Theory - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Local-global compatibility for regular algebraic cuspidal automorphic representation when $\ell \neq p$ 2014 Ila Varma
+ Local-global compatibility for l=p, I 2011 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ Local-global compatibility for l=p, I 2011 Thomas Barnet-Lamb
Toby Gee
David F. Geraghty
Richard J. K. Taylor
+ PDF Chat Local-global compatibility for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:math>, I 2012 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ Local-global compatibility for l=p, II 2011 Thomas Barnet-Lamb
Toby Gee
David F. Geraghty
Richard J. K. Taylor
+ Compatibility of local and global Langlands correspondences 2004 Richard Taylor
Teruyoshi Yoshida
+ PDF Chat Local-global compatibility for regular algebraic cuspidal automorphic representations when 2024 Ila Varma
+ PDF Chat Local-global compatibility for $l=p$, II 2014 Thomas Barnet-Lamb
Toby Gee
David Geraghty
Richard Taylor
+ PDF Chat Local-global compatibility and the action of monodromy on nearby cycles 2012 Ana Caraiani
+ The Local Langlands correspondence for $\GL_n$ over $p$-adic fields 2010 Peter Scholze
+ The Local Langlands correspondence for $\GL_n$ over $p$-adic fields 2010 Peter Scholze
+ PDF Chat A Rank-Two Case of Local-Global Compatibility for $l = p$ 2024 Yuji Yang
+ PDF Chat The Local Langlands Correspondence for GL n over p-adic fields 2012 Peter Scholze
+ PDF Chat Rankin–Selberg gamma factors of level zero representations of GL<sub> <i>n</i> </sub> 2018 Rongqing Ye
+ The local Langlands correspondence for $\DeclareMathOperator{\GL}{GL}\GL_n$ over function fields 2021 Siyan Daniel Li-Huerta
+ The local Langlands correspondence for $\DeclareMathOperator{\GL}{GL}\GL_n$ over function fields 2021 Siyan Daniel Li-Huerta
+ Monodromy for some rank two Galois representations over CM fields 2019 Patrick B. Allen
James Newton
+ PDF Chat Monodromy for Some Rank Two Galois Representations over CM Fields 2020 Patrick B. Allen
James Newton
+ Local-to-global extensions for GL n in non-zero characteristic: a characterization of γ F ( s , π, Sym 2 , ψ) and γ F ( s , π, ∧ 2 , ψ) 2011 Guy Henniart
Luis Lomelí
+ PDF Chat (<i>p,p</i>)-Galois representations attached to automorphic forms on GL<sub><i>n</i></sub> 2011 Eknath Ghate
Narasimha Kumar