Quantum $$ SL _2$$, infinite curvature and Pitman’s 2M-X theorem

Type: Article

Publication Date: 2020-11-20

Citations: 1

DOI: https://doi.org/10.1007/s00440-020-01002-8

Locations

  • Probability Theory and Related Fields - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Geometro-stochastic quantization and quantum geometry 2008 Eduard Prugovaki
+ PDF Chat Random manifolds and quantum gravity 2000 A Krzywicki
+ PDF Chat Random manifolds and quantum gravity 2000 A. Krzywicki
+ Riemannian geometry of quantum computation 2008 Howard E. Brandt
+ Riemannian geometry of quantum computation 2010 Howard E. Brandt
+ Tools in the Riemannian geometry of quantum computation 2011 Howard E. Brandt
+ Heat kernel estimates for the Grusin operator 2007 Martin Paulat
+ Möbius Quantum Walk 2017 Majid Moradi
Mostafa Annabestani
+ Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion 2013 Reda Chhaibi
+ Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion 2013 Reda Chhaibi
+ Géométrie du groupe de Heisenberg 2024 Pierre Pansu
+ Quantum gravity and random surfaces 1992 H. Kawai
+ PDF Chat Quantum walks and gravitational waves 2017 Pablo Arnault
Fabrice Debbasch
+ PDF Chat Quantum Walks: A Markovian Perspective 2008 Diego de Falco
Dario Tamascelli
+ Quantum mechanics of Riemannian geometry 1996 Abhay Ashtekar
+ Manin's quantum spaces and standard quantum mechanics 1990 E.G. Floratos
+ Non-archimedean geometry and quantum mechanics 1989 B.L. Spokoiny
+ PDF Chat Quantum Walks 2011 Daniel Reitzner
Daniel Nagaj
Vladimír Bužek
+ Uncertainty principle and geometry of the infinite Grassmann manifold 2017 Esteban Andruchow
Gustavo Corach
+ Random Surfaces and Quantum Loewner Evolution 2014 Jason Miller