Unitary circuit synthesis for tomography of generalized coherent states

Type: Article

Publication Date: 2019-11-01

Citations: 5

DOI: https://doi.org/10.1063/1.5121549

View Chat PDF

Abstract

We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared. Such expectation values can be estimated by performing projective measurements on $O(M^3 \log(M/\delta)/\epsilon^2)$ copies of the state, where $M$ is the dimension of an associated Lie algebra, $\epsilon$ is a precision parameter, and $1-\delta$ is the required confidence level. The method can be implemented on a classical computer and runs in time $O(M^4 \log(M/\epsilon))$. It provides $O(M \log(M/\epsilon))$ simple unitaries that form the sequence. The number of all computational resources is then polynomial in $M$, making the whole procedure very efficient in those cases where $M$ is significantly smaller than the Hilbert space dimension. When the algebra of relevant observables is determined by some Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to quantum state tomography and classical simulations of quantum circuits.

Locations

  • Journal of Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Quantum Circuits for Incompletely Specified Two-Qubit Operators 2004 Vivek Shende
Igor L. Markov
+ PDF Chat Quantum circuits for incompletely specified two-qubit operators 2005 Vivek Shende
I.L. Markov
+ Diagrams of States in Quantum Information: an Illustrative Tutorial 2009 Sara Felloni
Alberto Leporati
G. Strini
+ Diagrams of States in Quantum Information: an Illustrative Tutorial 2009 Sara Felloni
Alberto Leporati
G. Strini
+ PDF Chat Contractive Unitary and Classical Shadow Tomography 2024 Yadong Wu
Ce Wang
Juan Yao
Hui Zhai
Yi‐Zhuang You
Pengfei Zhang
+ PDF Chat Numerical Circuit Synthesis and Compilation for Multi-State Preparation 2023 Aaron Szasz
Ed Younis
Wibe A. de Jong
+ PDF Chat Dense Quantum Measurement Theory 2019 László Gyöngyösi
Sándor Imre
+ PDF Chat Emergent unitary designs for encoded qubits from coherent errors and syndrome measurements 2024 Zihan Cheng
Eric Huang
Vedika Khemani
Michael J. Gullans
Matteo Ippoliti
+ PDF Chat Three-step implementation of any<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:math>unitary with a complete graph of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>qubits 2015 Amara Katabarwa
Michael R. Geller
+ Numerical circuit synthesis and compilation for multi-state preparation 2023 Aaron Szasz
Ed Younis
Wibe A. de Jong
+ PDF Chat Tomography of quantum detectors 2008 Jeff S. Lundeen
Alejandro Feito
Hendrik B. Coldenstrodt-Ronge
K. L. Pregnell
Christine Silberhorn
Timothy C. Ralph
Jens Eisert
Martin B. Plenio
Ian A. Walmsley
+ Quantum algorithms for linear systems of equations inspired by adiabatic quantum computing 2018 Yiğit Subaşı
Rolando D. Somma
Davide Orsucci
+ PDF Chat Quantum Simulation Using Noisy Unitary Circuits and Measurements 2022 Oliver Lunt
Jonas Richter
Arijeet Pal
+ Designing Efficient Programmable Quantum Circuits 2012 Ammar Daskin
Ananth Grama
George Kollias
Sabre Kais
+ Quantum Computing: Lecture Notes 2019 Ronald de Wolf
+ Configurable sublinear circuits for quantum state preparation 2021 Israel F. Araujo
Daniel K. Park
Teresa B. Ludermir
Wilson R. Oliveira
Francesco Petruccione
Adenilton J. da Silva
+ PDF Chat Bridging Classical and Quantum: Group-Theoretic Approach to Quantum Circuit Simulation 2024 Daksh Shami
+ PDF Chat Low-depth quantum state preparation 2021 Xiao‐Ming Zhang
Man‐Hong Yung
Xiao Yuan
+ PDF Chat Classical simulation of non-Gaussian bosonic circuits 2024 Beatriz Dias
Robert Koenig
+ Optimal Quantum State Tomography with Noisy Gates 2022 Violeta N. Ivanova-Rohling
Niklas Rohling
Guido Burkard

Citing (12)

Action Title Year Authors
+ Quantum Computation, Complexity, and Many-Body Physics 2005 Rolando D. Somma
+ PDF Chat Generalizations of entanglement based on coherent states and convex sets 2003 Howard Barnum
Emanuel Knill
Gerardo Ortíz
Lorenza Viola
+ PDF Chat Efficient quantum state tomography 2010 M. Cramer
Martin B. Plenio
Steven T. Flammia
Rolando D. Somma
David Groß
Stephen D. Bartlett
Olivier Landon-Cardinal
David Poulin
Yi-Kai Liu
+ PDF Chat Permutationally Invariant Quantum Tomography 2010 G. Tóth
Witlef Wieczorek
David J. Gross
Roland Krischek
Christian Schwemmer
Harald Weinfurter
+ PDF Chat Lower bounds for the fidelity of entangled-state preparation 2006 Rolando D. Somma
John Chiaverini
D. J. Berkeland
+ PDF Chat Nature and measure of entanglement in quantum phase transitions 2004 Rolando D. Somma
Gerardo Ortíz
Howard Barnum
Emanuel Knill
Lorenza Viola
+ PDF Chat Simulating physical phenomena by quantum networks 2002 Rolando D. Somma
Gerardo Ortíz
J. E. Gubernatis
Emanuel Knill
Raymond Laflamme
+ PDF Chat Efficient Solvability of Hamiltonians and Limits on the Power of Some Quantum Computational Models 2006 Rolando D. Somma
Howard Barnum
Gerardo Ortíz
Emanuel Knill
+ PDF Chat Classical Verification of Quantum Computations 2018 Urmila Mahadev
+ Quantum Simulations of Physics Problems 2003 Rolando D. Somma
Gerardo Ortíz
Emanuel Knill
J. E. Gubernatis
+ PDF Chat Diagonalization in Compact Lie Algebras and a New Proof of a Theorem of Kostant 1993 N. J. Wildberger
+ PDF Chat Unconditionally verifiable blind quantum computation 2017 Joseph F. Fitzsimons
Elham Kashefi