Remarks on the Crouzeix--Palencia Proof that the Numerical Range is a (1+\sqrt2)-Spectral Set

Type: Article

Publication Date: 2018-01-01

Citations: 11

DOI: https://doi.org/10.1137/17m1143757

Abstract

Crouzeix and Palencia recently showed that the numerical range of a Hilbert-space operator is a (1+\sqrt2)-spectral set for the operator. One of the principal ingredients of their proof can be formulated as an abstract functional-analysis lemma. We give a new short proof of the lemma and show that, in the context of this lemma, the constant (1+\sqrt2) is sharp.

Locations

  • SIAM Journal on Matrix Analysis and Applications - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Some Extensions of the Crouzeix-Palencia Result 2017 Trevor Caldwell
Anne Greenbaum
Kenan Li
+ Numerical Ranges of Hilbert Space Operators 2021 Hwa-Long Gau
Pei Yuan Wu
+ PDF Chat Some Extensions of the Crouzeix--Palencia Result 2018 Trevor Caldwell
Anne Greenbaum
Kenan Li
+ The numerical range as a spectral set 2017 Michel Crouzeix
César Palencia
+ The numerical range as a spectral set 2017 Michel Crouzeix
César Palencia
+ A Remark of the Numerical Ranges of Operators on Hilbert Spaces 2000 Hideo Takemoto
Nozomi Kakuta
+ A Remark of the Numerical Ranges of Operators on Hilbert Spaces 2002 Hideo Takemoto
Atsushi Uchiyama
+ A Remark of the Numerical Ranges of Operators on Hilbert Spaces 2000 英夫 武元
望 角田
+ The Numerical Range is a $(1+\sqrt{2})$-Spectral Set 2017 Michel Crouzeix
C. Palencia
+ PDF Chat A Note on the Carath\'{e}odory Number of the Joint Numerical Range 2024 Benedikt Maier
Tim Netzer
+ PDF Chat Some mapping theorems for the numerical range 1965 Tosio Kato
+ The Numerical Range of Linear Operators on Hilbert Spaces 2019 Boris Luttikhuizen
+ PDF Chat Spectral sets for numerical range 2017 Hubert Klaja
Javad Mashreghi
Thomas Ransford
+ PDF Chat Spectral sets for numerical range 2017 Hubert Klaja
Javad Mashreghi
Thomas Ransford
+ Spectral sets for numerical range 2017 Hubert Klaja
Javad Mashreghi
Thomas Ransford
+ Spectra and numerical ranges of Banach space operators 1990 宗雄 長
+ A semigroup approach to the numerical range of operators on Banach spaces 2015 Martin Adler
Waed Dada
Agnes Radl
+ A semigroup approach to the numerical range of operators on Banach spaces 2015 Martin Adler
Waed Dada
Agnes Radl
+ Numerical range and functional calculus in Hilbert space 2006 Michel Crouzeix
+ A note on the A-numerical range of semi-Hilbertian operators 2024 Anirban Sen
Riddhick Birbonshi
Kallol Paul