WELL-POSEDNESS FOR A FAMILY OF PERTURBATIONS OF THE KdV EQUATION IN PERIODIC SOBOLEV SPACES OF NEGATIVE ORDER

Type: Article

Publication Date: 2013-01-11

Citations: 5

DOI: https://doi.org/10.1142/s0219199713500053

Abstract

We establish local well-posedness in Sobolev spaces H s (𝕋), with s ≥ -1/2, for the initial value problem issues of the equation [Formula: see text] where η > 0, (Lu) ∧ (k) = -Φ(k)û(k), k ∈ ℤ and Φ ∈ ℝ is bounded above. Particular cases of this problem are the Korteweg–de Vries–Burgers equation for Φ(k) = -k 2 , the derivative Korteweg–de Vries–Kuramoto–Sivashinsky equation for Φ(k) = k 2 - k 4 , and the Ostrovsky–Stepanyams–Tsimring equation for Φ(k) = |k| - |k| 3 .

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Communications in Contemporary Mathematics - View

Similar Works

Action Title Year Authors
+ Well-posedness for some perturbations of the kdv equation with low regularity data 2008 Xavier Carvajal
Mahendra Panthee
+ Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Existence and Continuous Dependence of the Local Solution of Non-Homogeneous KdV-K-S Equation in Periodic Sobolev Spaces 2021 Yolanda Silvia Santiago Ayala
Santiago César Rojas Romero
+ PDF Chat Korteweg-de Vries Equation in Bounded Domains 2009 Nikolai A. Larkin
+ Local and global well-posedness for the Ostrovsky equation 2005 Felipe Linares
Aniura Milanés
+ ON THE LOCAL WELL-POSEDNESS FOR THE KDVKS EQUATION 2018 Hongwei Wang
Yuanyuan Zhang
+ PDF Chat On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation 2008 Zihua Guo
Baoxiang Wang
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 展 岸本
+ Local and global well-posedness for the KdV equation at the critical regularity (Nonlinear evolution equations and mathematical modeling) 2010 Nobu Kishimoto
+ PDF Chat Sharp local well-posedness of KdV type equations with dissipative perturbations 2016 Xavier Carvajal
Mahendra Panthee
+ PDF Chat Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity 2009 Nobu Kishimoto
+ Low regularity Cauchy problem for the fifth-order modified KdV equations on 𝕋 2018 Chulkwang Kwak
+ PDF Chat On Local Well-posedness of the Periodic Korteweg-de Vries Equation Below $H^{-\frac{1}{2}}(\mathbb{T})$ 2024 Ryan McConnell
Seungly Oh
+ Sharp local well-posedness of KdV type equations with dissipative perturbations 2013 Xavier Carvajal
Mahendra Panthee
+ Sharp local well-posedness of KdV type equations with dissipative perturbations 2013 Xavier Carvajal
Mahendra Panthee
+ On the Periodic Kdv Equation in 2008 Thomas Kappeler
Jürgen Pöschel
+ Well-posedness for a perturbation of the KdV equation 2019 Xavier Carvajal
Liliana Esquivel
+ Sharp well-posedness for Kadomtsev-Petviashvili-Burgers (KPBII) equation in $R^2$ 2006 Bassam Kojok