ℝ-trees, dual laminations and compact systems of partial isometries

Type: Article

Publication Date: 2009-04-15

Citations: 18

DOI: https://doi.org/10.1017/s0305004109002436

Abstract

Abstract Let F N be a free group of finite rank N ≥ 2, and let T be an ℝ-tree with a very small, minimal action of F N with dense orbits. For any basis of F N there exists a heart $K_{\CAr}$ ⊂ (= the metric completion of T ) which is a compact subtree that has the property that the dynamical system of partial isometries a i : $K_{\CAr} \cap a_{i} K_{\CAr} \to a_{i}\inv K_{\CAr} \cap K_{\CAr}$ , for each a i ∈ , defines a tree $T_{(K_{\CAn}, \CAr)}$ which contains an isometric copy of T as minimal subtree.

Locations

  • Mathematical Proceedings of the Cambridge Philosophical Society - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ ℝ-trees and laminations for free groups II: the dual lamination of an ℝ-tree 2008 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ On indecomposable trees in the boundary of Outer space 2010 Patrick Reynolds
+ On indecomposable trees in the boundary of Outer space 2010 C. Patrick Reynolds
+ PDF Chat $\R$-trees and laminations for free groups I: Algebraic laminations 2008 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ PDF Chat On indecomposable trees in the boundary of outer space 2010 Patrick Reynolds
+ PDF Chat Non-unique ergodicity, observers' topology and the dual algebraic lamination for $\Bbb R$-trees 2007 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ PDF Chat ℝ-trees and laminations for free groups III: currents and dual ℝ-tree metrics 2008 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ Stabilizers of ℝ-trees with free isometric actions of<i>F<sub>N</sub></i> 2011 Ilya Kapovich
Martin Lustig
+ PDF Chat Intersection Form, Laminations and Currents on Free Groups 2009 Ilya Kapovich
Martin Lustig
+ On Indecomposable Trees in Outer Space 2010 Patrick Reynolds
+ Invariant laminations for irreducible automorphisms of free groups 2011 Ilya Kapovich
Martin Lustig
+ PDF Chat $\R$-trees and laminations for free groups II: The dual lamination of an $\R$-tree 2008 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ Pseudogroups of isometries of ℝ and Rips’ theorem on free actions on ℝ-trees 1994 Damien Gaboriau
Gilbert Levitt
F. Paulin
+ Invariant laminations for irreducible automorphisms of free groups 2011 Ilya Kapovich
Martin Lustig
+ PDF Chat INVARIANT LAMINATIONS FOR IRREDUCIBLE AUTOMORPHISMS OF FREE GROUPS 2014 Ilya Kapovich
Martin Lustig
+ Topology and Geometry of Deformation Spaces of G-trees 2014 Sebastian Meinert
+ Pseudogroups of isometries of ℝ: reconstruction of free actions on ℝ-trees 1995 Damien Gaboriau
Gilbert Levitt
Frédéric Paulin
+ Non-unique ergodicity, observers' topology and the dual algebraic lamination for $\R$-trees 2007 Thierry Coulbois
Arnaud Hilion
Martin Lustig
+ Reducing systems for very small trees 2012 Patrick Reynolds
+ PDF Chat Tree-Irreducible Automorphisms of Free Groups 2014 Martin Lustig