Triangulations and a Discrete Brunn–Minkowski Inequality in the Plane

Type: Article

Publication Date: 2019-08-29

Citations: 3

DOI: https://doi.org/10.1007/s00454-019-00131-9

Locations

  • Discrete & Computational Geometry - View
  • Repository of the Academy's Library (Library of the Hungarian Academy of Sciences) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • UPCommons institutional repository (Universitat Politècnica de Catalunya) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A note on triangulations of sum sets 2013 Károly J. Böröczky
Benjamin Hoffman
+ A note on triangulations of sum sets 2013 Károly J. Böröczky
Benjamin Hoffman
+ A note on triangulations of sum sets 2013 Benjamin Homan
+ PDF Chat A note on triangulations of sumsets 2015 Károly J. Böröczky
Benjamin Hoffman
+ PDF Chat Discrete Brunn-Minkowski Inequality for subsets of the cube 2024 Lars Becker
Paata Ivanisvili
Dmitry Krachun
José Madrid
+ PDF Chat Extremal problems on triangle areas in two and three dimensions 2009 Adrian Dumitrescu
Micha Sharir
Csaba D. Tóth
+ On Ruzsa's discrete Brunn-Minkowski conjecture 2023 Peter van Hintum
Peter Keevash
Marius Tiba
+ On a Discrete Brunn--Minkowski Type Inequality 2018 María A. Hernández Cifre
David Iglesias
Jesús Yepes Nicolás
+ A Mattila-Sjölin theorem for triangles 2021 Eyvindur A. Palsson
Francisco Romero Acosta
+ PDF Chat Triangles of nearly equal area 2021 Konrad J. Swanepoel
+ PDF Chat An Isoperimetric Inequality for Planar Triangulations 2017 Omer Angel
Itaı Benjamini
Nizan Horesh
+ An isoperimetric inequality for planar triangulations 2016 Omer Angel
Itaı Benjamini
Nizan Horesh
+ An isoperimetric inequality for planar triangulations 2016 Omer Angel
Itaı Benjamini
Nizan Horesh
+ Two Geometric Interpretations of Hardy Sums 2022 Alessandro Lägeler
+ A parametrization of equilateral triangles having integer coordinates 2006 Eugen J. Ionaşcu
+ The Existence of a Triangle with Prescribed Angle Bisector Lengths 1994 Petru Mironescu
Laurenţiu Panaitopol
+ PDF Chat A Mattila-Sjölin theorem for triangles 2022 Eyvindur A. Palsson
Francisco Romero Acosta
+ PDF Chat On triangles determined by subsets of the Euclidean plane, the associated bilinear operators and applications to discrete geometry 2012 Allan Greenleaf
Alex Iosevich
+ PDF Chat A Sharp Inequality And The Inradius Conjecture 2001 Faruk F. Abi-Khuzam
Roy Barbara
+ Disjoint non-monochromatic triangles in the plane 2016 Andreas F. Holmsen
Claudiu Valculescu

Works That Cite This (0)

Action Title Year Authors