The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels

Type: Article

Publication Date: 2017-04-20

Citations: 36

DOI: https://doi.org/10.1088/1742-5468/aa68a7

Abstract

Weyl–Heisenberg ensembles are a class of determinantal point processes associated with the Schrödinger representation of the Heisenberg group. Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. We will prove that Weyl–Heisenberg ensembles are hyperuniform. Weyl–Heisenberg ensembles include as a special case a multi-layer extension of the Ginibre ensemble modeling the distribution of electrons in higher Landau levels, which has recently been object of study in the realm of the Ginibre-type ensembles associated with polyanalytic functions. In addition, the family of Weyl–Heisenberg ensembles includes new structurally anisotropic processes, where point-statistics depend on the different spatial directions, and thus provide a first means to study directional hyperuniformity.

Locations

  • Journal of Statistical Mechanics Theory and Experiment - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The Weyl-Heisenberg ensemble: Statistical mechanics meets time-frequency analysis 2017 Luís Daniel Abreu
João M. Pereira
José Luis Romero
Salvatore Torquato
+ Entanglement entropy and hyperuniformity of Ginibre and Weyl-Heisenberg ensembles 2023 Luís Daniel Abreu
+ PDF Chat Harmonic Analysis in Phase Space and Finite Weyl–Heisenberg Ensembles 2019 Luís Daniel Abreu
Karlheinz Gröchenig
José Luis Romero
+ Hyperuniformity of the determinantal point processes associated with the Heisenberg group 2022 Makoto Katori
+ PDF Chat Local number variances and hyperuniformity of the Heisenberg family of determinantal point processes 2021 Takato Matsui
Makoto Katori
Tomoyuki Shirai
+ PDF Chat Entanglement entropy and hyperuniformity of Ginibre and Weyl–Heisenberg ensembles 2023 Luís Daniel Abreu
+ PDF Chat The affine ensemble: determinantal point processes associated with the $ax + b$ group 2022 Luís Daniel Abreu
Péter Balázs
Smiljana Jakšić
+ PDF Chat Fluctuations in Various Regimes of Non-Hermiticity and a Holographic Principle 2024 G. Akemann
M. Duits
Leslie Molag
+ Quasi-random integration in high dimensions 2006 George Takhtamyshev
Bart Vandewoestyne
Ronald Cools
+ The affine ensemble: determinantal point processes associated with the ax+b group 2022 Luís Daniel Abreu
Péter Balázs
Smiljana Jakšić
+ PDF Chat None 2011 M.H. Lee
+ PDF Chat None 2011 Wojciech Roga
Marek Smaczyński
Karol Życzkowski
+ PDF Chat None 2011 Vyacheslav L. Girko
+ Gaussian fluctuations for βEnsembles 2007 Rowan Killip
+ A Central Limit Theorem for Fluctuations in Polyanalytic Ginibre Ensembles 2016 Antti Haimi
Aron Wennman
+ PDF Chat The Interpolating Airy Kernels for the $$\beta =1$$ β = 1 and $$\beta =4$$ β = 4 Elliptic Ginibre Ensembles 2014 Gernot Akemann
M. J. Phillips
+ PDF Chat The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions 2023 Gernot Akemann
Maurice Duits
Leslie Molag
+ PDF Chat A Central limit theorem for fluctuations in Polyanalytic Ginibre ensembles 2017 Antti Haimi
Aron Wennman
+ The Elliptic Ginibre Ensemble: A Unifying Approach to Local and Global Statistics for Higher Dimensions 2022 G. Akemann
M. Duits
L. D. Molag
+ A Central Limit Theorem for Fluctuations in Polyanalytic Ginibre Ensembles 2016 Antti Haimi
Aron Wennman