Abelian decomposition and Weyl symmetric effective action of SU(3) QCD

Type: Article

Publication Date: 2019-06-01

Citations: 4

DOI: https://doi.org/10.1140/epjc/s10052-019-7023-x

Abstract

We show how to calculate the effective potential of SU(3) QCD which tells that the true minimum is given by the monopole condensation. To do this we make the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and the colored chromons. In the perturbative regime this decomposes the Feynman diagram in such a way that the conservation of color is explicit. Moreover, this shows the existence of two gluon jets, the neuron jet and chromon jet, which can be verified by experiment. In the non-perturbative regime, the decomposition puts QCD to the background field formalism and reduces the non-Abelian gauge symmetry to a discrete color reflection symmetry, and provides us an ideal platform to calculate the one-loop effective action of QCD. Integrating out the chromons from the Weyl symmetric Abelian decomposition of QCD gauge invariantly imposing the color reflection invariance, we obtain the SU(3) QCD effective potential which generates the stable monopole condensation and the mass gap. We discuss the physical implications of our result, in particular the possible existence of the vacuum fluctuation mode of the monopole condensation in QCD.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • The European Physical Journal C - View - PDF

Similar Works

Action Title Year Authors
+ Weyl symmetric Effective Action and Monopole Condensation in SU(3) QCD 2014 Y. M. Cho
Franklin H. Cho
Kyoungtae Kimm
+ Weyl symmetric Abelian Decomposition and Monopole Condensation in SU(3) QCD 2014 Y.M. Cho
Kyoungtae Kimm
+ PDF Chat Monopole condensation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>QCD 2002 Y. M. Cho
D. G. Pak
+ Color structure of quantum SU(N) Yang-Mills theory 2020 D. G. Pak
Rong-Gen Cai
Takuya Tsukioka
Yu-Feng Zhou
+ Monopole Condensation in SU(2) QCD 2002 Y. M. Cho
+ PDF Chat QCD condensates with flavor SU(3) symmetry breaking from the instanton vacuum 2007 Seung-il Nam
Hyun-Chul Kim
+ Microscopic vacuum structure in a pure QCD 2018 D. G. Pak
Pengming Zhang
+ Microscopic structure of a pure QCD vacuum 2018 D. G. Pak
Pengming Zhang
+ PDF Chat Dimensional transmutation by monopole condensation in QCD 2013 Y. M. Cho
Franklin H. Cho
J. H. Yoon
+ PDF Chat Weyl symmetric structure of QCD vacuum 2012 Y. M. Cho
D. G. Pak
Pengming Zhang
Liping Zou
+ The color gauge invariance of QCD and a possible origin of the Jaffe-Witten mass gap 2008 V. Gogokhia
+ Gauge Invariance and Stability of SNO vacuum in QCD 2004 Y. M. Cho
+ PDF Chat Emergent Non-Invertible Symmetries Bridging UV and IR Phases -- The Adjoint QCD Example 2024 Michele Del Zotto
Shani Meynet
Daniele Migliorati
Kantaro Ohmori
+ Notes on $\mathcal{N}=1$ QCD$_3$ with baryon superpotential 2019 Vladimir Bashmakov
Hrachya Khachatryan
+ Structure of QCD vacuum at zero temperature 2018 D. G. Pak
Pengming Zhang
+ PDF Chat Monopole action and monopole condensation in SU(3) lattice QCD 1997 Natsuko Arasaki
Shinji Ejiri
Shun-ichi Kitahara
Yoshimi Matsubara
Tsuneo Suzuki
+ Dynamical Symmetry Breaking and Magnetic Confinement in QCD 2000 Y. M. Cho
D. G. Pak
+ Monopoles of the Dirac type and color confinement in QCD -- First results of SU(3) numerical simulations without gauge fixing 2022 Katsuya Ishiguro
Atsuki Hiraguchi
Tsuneo Suzuki
+ A non-abelian model $SU(N) \times SU(N)$ 2016 M. J. Neves
R. Doria
+ PDF Chat Abelian decomposition and glueball-quarkonium mixing in QCD 2018 Pengming Zhang
Liping Zou
Y.M. Cho

Works Cited by This (34)

Action Title Year Authors
+ A potential approach to spinor quarks 1974 Ye-eun Cho
+ PDF Chat Knot topology of classical QCD vacuum 2006 Y.M. Cho
+ PDF Chat Monopole condensation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>QCD 2002 Y. M. Cho
D. G. Pak
+ PDF Chat REVIEW OF PARTICLE PHYSICS Particle Data Group 2014 Keith A. Olive
+ PDF Chat Extended QCD versus Skyrme-Faddeev theory 2001 W. S. Bae
Y. M. Cho
Seung-Won Kimm
+ PDF Chat Lattice construction of Cho–Faddeev–Niemi decomposition and gauge-invariant monopole 2005 Seikou Kato
Kei-Ichi Kondo
T. Murakami
Akihiro Shibata
T. Shinohara
Sadayoshi Ito
+ PDF Chat Compact lattice formulation of Cho–Faddeev–Niemi decomposition: String tension from magnetic monopoles 2006 Sadayoshi Ito
Seikou Kato
Kei-Ichi Kondo
T. Murakami
Akihiro Shibata
T. Shinohara
+ New descriptions of lattice <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="italic">SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> Yang–Mills theory towards quark confinement 2008 Kei-Ichi Kondo
Akihiro Shibata
Toru Shinohara
T. Murakami
Seikou Kato
Shoichi Ito
+ PDF Chat Constant External Fields in Gauge Theory and the Spin 0, 12, 1 Path Integrals 1997 M. Reuter
Michael G. Schmidt
Christian Schubert
+ PDF Chat STABILITY OF MONOPOLE CONDENSATION IN <font>SU</font>(2) QCD 2004 Y. M. Cho
Michael L. Walker