A New Construction of Nonlinear Codes via Rational Function Fields

Type: Article

Publication Date: 2020-11-10

Citations: 3

DOI: https://doi.org/10.1109/tit.2020.3037084

Abstract

It is well known that constructing codes with good parameters is one of the most important and fundamental problems in coding theory. Though a great many of good codes have been produced, most of them are defined over alphabets of sizes equal to prime powers. In this article, we provide a new explicit construction of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(q+1)$ </tex-math></inline-formula> -ary nonlinear codes via rational function fields, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is a prime power. Our codes are constructed by evaluations of rational functions at all rational places (including the place of "infinity") of the rational function field. Compared to the rational algebraic geometry codes, the main difference is that we allow rational functions to be evaluated at pole places. After evaluating rational functions from a union of Riemann-Roch spaces, we obtain a family of nonlinear codes with length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> over the alphabet <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {F}_{q}\cup \{\infty \}$ </tex-math></inline-formula> . As a result, our codes have reasonable parameters as they are rather close to the Singleton bound. Furthermore, our codes have better parameters than those obtained from MDS codes via code alphabet restriction or extension. Amazingly, an efficient decoding algorithm can be provided for our codes.

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ PDF Chat A New Construction of Nonlinear Codes via Algebraic Function Fields 2023 Shu Liu
Liming Ma
Ting-Yi Wu
Chaoping Xing
+ A new construction of nonlinear codes via rational function fields 2019 Lingfei Jin
Liming Ma
Chaoping Xing
+ A new construction of nonlinear codes via algebraic function fields 2022 Shu Liu
Liming Ma
Ting-Yi Wu
Chaoping Xing
+ Highly nonlinear functions over finite fields 2019 Kai‐Uwe Schmidt
+ Highly nonlinear functions over finite fields 2019 Kai‐Uwe Schmidt
+ PDF Chat Binary Sequences With a Low Correlation via Cyclotomic Function Fields 2022 Lingfei Jin
Liming Ma
Chaoping Xing
+ PDF Chat Encoding of algebraic geometry codes with quasi-linear complexity $O(N\log N)$ 2024 Songsong Li
Shu Liu
Liming Ma
Yunqi Wan
Chaoping Xing
+ Linear Codes over Galois Ring $GR(p^2,r)$ Related to Gauss sums 2016 Aixian Zhang
Jin Li
Keqin Feng
+ Subfield codes of linear codes from perfect nonlinear functions and their duals 2020 Dabin Zheng
Xiaoqiang Wang
Yayao Li Yayao Li
Mu Yuan
+ Subfield Codes of Linear Codes from Perfect Nonlinear Functions and Their Duals 2022 Dabin Zheng
Xiaoqiang Wang
Yayao Li Yayao Li
Mu Yuan
+ PDF Chat Introducing locality in some generalized AG codes 2024 Bastien Pacifico
+ PDF Chat Constructing New APN Functions Through Relative Trace Functions 2022 Lijing Zheng
Haibin Kan
Yanjun Li
Jie Peng
Deng Tang
+ Algebraic Manipulation Detection Codes via Highly Nonlinear Functions 2020 Minfeng Shao
Ying Miao
+ Negacyclic codes over Z/sub 4/ of even length 2003 Thomas Blackford
+ PDF Chat Construction of Hadamard &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$ {\mathbb {Z}}_{2} {\mathbb {Z}}_{4} {Q}_{8}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Codes for Each Allowable Value of the Rank and Dimension of the Kernel 2015 Pere Montolio
Josep Rifà
+ Still better nonlinear codes from modular curves 2003 Noam D. Elkies
+ PDF Chat New Partial Orders of Polar Codes for BMSC 2024 Liuquan Yao
Zhichao Liu
Yuan Li
Huazi Zhang
Jun Wang
Guiying Yan
Zhi-Ming Ma
+ p-Adic Codes 2020 Simeon Ball
+ A new construction of Algebraic Geometry code using Trace function 2020 Nupur Patanker
Sanjay Kumar Singh
+ Locally recoverable codes from towers of function fields 2022 María Chara
F. Galluccio
Edgar Martı́nez-Moro