Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein series

Type: Article

Publication Date: 2014-10-21

Citations: 5

DOI: https://doi.org/10.2140/ant.2014.8.1539

Abstract

The problem of quantum unique ergodicity (QUE) of weight 1/2 Eisenstein series for Γ_0(4) leads to the study of certain double Dirichlet series involving GL2 automorphic forms and Dirichlet characters. We study the analytic properties of this family of double Dirichlet series (analytic continuation, convexity estimate) and prove that a subconvex estimate implies the QUE result.

Locations

  • Algebra & Number Theory - View - PDF
  • UCL Discovery (University College London) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The Quantum Unique Ergodicity and the L4-norm Problems for Newform Eisenstein Series 2020 Jiakun Pan
+ Multiple Dirichlet series and automorphic forms 2006 Gautam Chinta
Solomon Friedberg
Jeffrey Hoffstein
+ Quantum unique ergodicity of degenerate eisenstein series on gl(n) 2016 Liyang Zhang
+ PDF Chat Quantum Unique Ergodicity of Degenerate Eisenstein Series on GL(n) 2019 Liyang Zhang
+ PDF Chat Quantum unique ergodicity for half-integral weight automorphic forms 2019 Stephen Lester
Maksym Radziwiłł
+ Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory 2006 Solomon Friedberg
Daniel Bump
Dorian Goldfeld
Jeffrey Hoffstein
+ On certain Dirichlet series associated with automorphic forms on SL(2,C) 1986 Koichi Takase
+ On the Double Dirichlet Series 1937 Naobumi Takagi
+ Double Dirichlet series 1978 A. Janušauskas
+ PDF Chat Subconvexity Implies Effective Quantum Unique Ergodicity for Hecke-Maa{\ss} Cusp Forms on $\mathrm{SL}_2(\mathbb{Z}) \backslash \mathrm{SL}_2(\mathbb{R})$ 2024 Ankit Bisain
Peter Humphries
Andrei Mandelshtam
Noah Walsh
Xun Wang
+ Quantum Unique Ergodicity for Eisenstein Series on Bruhat–Tits Buildings 2024 Ikuya Kaneko
Shin-ya Koyama
+ Quantum Ergodicity of Eisenstein Series for Arithmetic 3-Manifolds 2000 Shin-ya Koyama
+ PDF Chat The quantum unique ergodicity conjecture for thin sets 2015 Matthew P. Young
+ PDF Chat Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 2021 Jiakun Pan
Matthew P. Young
+ Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 2019 Jiakun Pan
Matthew P. Young
+ PDF Chat Effective Quantum Unique Ergodicity for Hecke–Maass Newforms and Landau–Siegel Zeros 2021 Jesse Thorner
+ A Note on Holomorphic Quantum Unique Ergodicity 2021 Krishnarjun Krishnamoorthy
+ Dirichlet series related to the Eisenstein series on the Siegel upper half-plane 1978 Tsuneo Arakawa
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ Dirichlet series with periodic coefficients(Analytic Number Theory) 1994 Masami Ishibashi
Shigeru Kanemitsu