THE CO-HOPFIAN PROPERTY OF SURFACE BRAID GROUPS

Type: Article

Publication Date: 2013-08-14

Citations: 8

DOI: https://doi.org/10.1142/s0218216513500557

Abstract

Let g and n be integers at least two, and let G be the pure braid group with n strands on a closed orientable surface of genus g. We describe any injective homomorphism from a finite index subgroup of G into G. As a consequence, we show that any finite index subgroup of G is co-Hopfian.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Knot Theory and Its Ramifications - View

Similar Works

Action Title Year Authors
+ Braid groups and the co-Hopfian property 2005 Robert W. Bell
Dan Margalit
+ PDF Chat Geometric representations of the braid group on a nonorientable surface 2024 Michał Stukow
Błażej Szepietowski
+ Braid groups are almost co-Hopfian 2004 Robert W. Bell
Dan Margalit
+ PDF Chat Commensurators of surface braid groups 2011 Yoshikata Kida
Saeko Yamagata
+ PDF Chat Surfaces of infinite-type are non-Hopfian 2023 Sumanta Das
Siddhartha Gadgil
+ Surface framed braids 2010 Paolo Bellingeri
Sylvain Gervais
+ Surface framed braids 2010 Paolo Bellingeri
Sylvain Gervais
+ Surfaces of infinite-type are non-Hopfian 2022 Sumanta Das
Siddhartha Gadgil
+ On the pure braid group of a surface 2004 Miguel A. Xicoténcatl
+ On the pure braid group of a surface 2003 Miguel A. Xicoténcatl
+ PDF Chat From braid groups to mapping class groups 2022 Lei Chen
Aru Mukherjea
+ Big mapping class groups and the co-Hopfian property 2021 Javier Aramayona
Christopher J. Leininger
Alan McLeay
+ PDF Chat Big Mapping Class Groups and the Co-Hopfian Property 2023 Javier Aramayona
Christopher J. Leininger
Alan McLeay
+ Abelian Cycles in the Homology of the Torelli group 2020 Erik Lindell
+ PDF Chat ABELIAN CYCLES IN THE HOMOLOGY OF THE TORELLI GROUP 2021 Erik Lindell
+ Ordering pure braid groups on closed surfaces 2000 Juan González-Meneses
+ Braid Groups on Triangulated Surfaces and Singular Homology 2017 Karthik Yegnesh
+ PDF Chat Finite Quotients of Surface Braid Groups and Double Kodaira Fibrations 2023 Francesco Polizzi
Pietro Sabatino
+ PDF Chat Characteristics of Graph Braid Groups 2012 Ki Hyoung Ko
Hyo Won Park
+ Finite quotients of surface braid groups and double Kodaira fibrations 2021 Francesco Polizzi
Pietro Sabatino