Yang-Mills theory and Tamagawa numbers: the fascination of unexpected links in mathematics

Type: Article

Publication Date: 2008-05-07

Citations: 14

DOI: https://doi.org/10.1112/blms/bdn036

Abstract

Atiyah and Bott used equivariant Morse theory applied to the Yang-Mills functional to calculate the Betti numbers of moduli spaces of vector bundles over a Riemann surface, rederiving inductive formulae obtained from an arithmetic approach which involved the Tamagawa number of SL_n. This article surveys this link between Yang-Mills theory and Tamagawa numbers, and explains how methods used over the last three decades to study the singular cohomology of moduli spaces of bundles on a smooth complex projective curve can be adapted to the setting of A^1-homotopy theory to study the motivic cohomology of these moduli spaces.

Locations

  • Bulletin of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Yang-Mills theory and Tamagawa numbers 2008 Aravind Asok
Brent Doran
Frances Kirwan
+ G. Freixas i Montplet - Automorphic forms and arithmetic intersections (part 3) 2017 Gerard Freixas i Montplet
Jérémy Magnien
+ Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondence 2020 Gerard Freixas i Montplet
+ On the Determinantal Approach to the Tamagawa Number Conjecture 2015 Thong Nguyen Quang
+ On the Local Tamagawa Number Conjecture for Tate Motives 2014 Gerald Joseph Daigle
+ PDF Chat Handbook of TeichmĂŒller Theory, Volume VI 2016 Norbert A’Campo
Lizhen Ji
Athanase Papadopoulos
+ A Morse theory for equivariant Yang-Mills 1992 Thomas H. Parker
+ PDF Chat Yang–Mills theory over surfaces and the Atiyah–Segal theorem 2008 Daniel A. Ramras
+ Lectures and notes: Mirzakhani's volume recursion and approach for the Witten-Kontsevich theorem on moduli tautological intersection numbers 2011 Scott A. Wolpert
+ Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces 1980 Raoul Bott
+ Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces 1995 Raoul Bott
+ Artin Motives, Weights, and Motivic Nearby Sheaves 2019 Florian Ivorra
Julien Sebag
+ Zeta and L-Functions of Varieties and Motives 2020 Bruno Kahn
+ Characteristic Classes of Spin Surface Bundles: Applications of the Madsen-Weiss Theory 2006 Johannes Ebert
+ PDF Chat Relative Lefschetz Action and BPS State Counting 2001 Shinobu Hosono
Masa-Hiko Saito
Atsushi Takahashi
+ An introduction to the equivariant Tamagawa number conjecture: the relation to the Birch-Swinnerton-Dyer conjecture 2009 Guido Kings
+ PDF Chat Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs 1999 Victor V. Batyrev
+ A cohomological Tamagawa number formula 2009 Annette Huber
Guido Kings
+ On the equivariant Tamagawa number conjecture 2006 Tejaswi Navilarekallu
+ An alternative construction of equivariant Tamagawa numbers 2019 Oliver BrÀunling