Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function

Type: Article

Publication Date: 2019-06-26

Citations: 32

DOI: https://doi.org/10.1107/s2053273319005606

Abstract

We present a method for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100,000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, we present a convolutional neural network (CNN) model which yields a promising result that it correctly identifies the space group among the top-6 estimates 91.9~\% of the time. The CNN model also successfully identifies space groups on 12 out of 15 experimental PDFs. We discuss interesting aspects of the failed estimates, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials.

Locations

  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • PubMed - View
  • DataCite API - View
  • Acta Crystallographica Section A Foundations and Advances - View

Similar Works

Action Title Year Authors
+ Identifying Crystal Structures Beyond Known Prototypes from X-ray Powder Diffraction Spectra 2023 Abhijith S. Parackal
Rhys E. A. Goodall
Felix A. Faber
Rickard Armiento
+ PDF Chat Designing a Dataset for Convolutional Neural Networks to Predict Space Groups Consistent with Extinction Laws 2024 Haolin Wang
Jiajun Zhong
Yikun Li
Junrong Zhang
Rong Du
+ Identification of Crystal Symmetry from Noisy Diffraction Patterns by A Shape Analysis and Deep Learning 2020 Leslie Ching Ow Tiong
Kim Jeongrae
Sang Soo Han
Dong-Hun Kim
+ PDF Chat Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning 2020 Leslie Ching Ow Tiong
Kim Jeongrae
Sang Soo Han
Dong-Hun Kim
+ PDF Chat Neural network based classification of crystal symmetries from x-ray diffraction patterns 2019 Pascal M. Vecsei
Kenny Choo
J. Chang
Titus Neupert
+ PDF Chat Robustness test of the <i>spacegroupMining</i> model for determining space groups from atomic pair distribution function data 2022 Ling Lan
Chia-Hao Liu
Qiang Du
Simon J. L. Billinge
+ Neural networks trained on synthetically generated crystals can extract structural information from ICSD powder X-ray diffractograms 2023 Henrik Schopmans
Patrick Reiser
Pascal Friederich
+ PDF Chat SimXRD-4M: Big Simulated X-ray Diffraction Data Accelerate the Crystalline Symmetry Classification 2024 Bin Cao
Yang Liu
Zinan Zheng
Ruifeng Tan
Jia Li
Tong‐Yi Zhang
+ PDF Chat CRYSPNet: Crystal structure predictions via neural networks 2020 Haotong Liang
Valentin Stanev
A. Gilad Kusne
Ichiro Takeuchi
+ Towards End-to-End Structure Solutions from Information-Compromised Diffraction Data via Generative Deep Learning 2023 Gabe Guo
Judah Goldfeder
Ling Lan
Aniv Ray
Albert Hanming Yang
Boyuan Chen
Simon J. L. Billinge
Hod Lipson
+ Crystal symmetry determination in electron diffraction using machine learning 2020 Kevin Kaufmann
Chaoyi Zhu
Alexander S. Rosengarten
Daniel Maryanovsky
Tyler Harrington
Eduardo Marin
Kenneth S. Vecchio
+ PDF Chat Paradigm shift in electron-based crystallography via machine learning. 2019 Kevin Kaufmann
Chaoyi Zhu
Alexander S. Rosengarten
Daniel Maryanovsky
Tyler Harrington
Eduardo Marin
Kenneth S. Vecchio
+ PDF Chat Powder Diffraction Crystal Structure Determination Using Generative Models 2024 Qi Li
Rui Jiao
Liming Wu
Tiannian Zhu
Wenbing Huang
Shifeng Jin
Junyang Liu
Hongming Weng
Xiaolong Chen
+ PDF Chat DScribe: Library of descriptors for machine learning in materials science 2022 Lauri Himanen
+ PDF Chat Insightful classification of crystal structures using deep learning 2018 Angelo Ziletti
Devinder Kumar
Matthias Scheffler
Luca M. Ghiringhelli
+ PDF Chat Accelerating Material Property Prediction using Generically Complete Isometry Invariants 2024 Jonathan Balasingham
Viktor Zamaraev
Vitaliy Kurlin
+ PDF Chat Accelerating Material Property Prediction using Generically Complete Isometry Invariants 2024 Jonathan Balasingham
Viktor Zamaraev
Vitaliy Kurlin
+ A Semi-Supervised Approach for Automatic Crystal Structure Classification 2021 Satvik Lolla
Haotong Liang
A. Gilad Kusne
Ichiro Takeuchi
William Ratcliff
+ A representation-independent electronic charge density database for crystalline materials 2021 Jimmy‐Xuan Shen
Jason M. Munro
Matthew K. Horton
Patrick Huck
Shyam Dwaraknath
Kristin A. Persson
+ DeepXRD, a Deep Learning Model for Predicting of XRD spectrum from Materials Composition 2022 Rongzhi Dong
Yong Zhao
Yuqi Song
Nihang Fu
Sadman Sadeed Omee
Sourin Dey
Qinyang Li
Lai Wei
Jianjun Hu

Works Cited by This (14)

Action Title Year Authors
+ PDF Chat Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis 2007 Ahmad S. Masadeh
Emil S. Božin
Christopher L. Farrow
Gianluca Paglia
Pavol Juhás
Simon J. L. Billinge
Abhijeet Karkamkar
Mercouri G. Kanatzidis
+ PDF Chat Universal solvent restructuring induced by colloidal nanoparticles 2015 Mirijam Zobel
Reinhard B. Neder
Simon A. J. Kimber
+ PDF Chat Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles 2009 Christopher L. Farrow
Simon J. L. Billinge
+ PDF Chat Structure Determination of Disordered Materials from Diffraction Data 2010 Matthew J. Cliffe
Martin T. Dove
D. A. Drabold
Andrew L. Goodwin
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
+ Klassengleichen supergroup–subgroup relationships between the space groups 1972 L. L. Boyle
J. E. Lawrenson
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ An Introduction to Statistical Learning 2013 Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani
+ PDF Chat Absence of local fluctuating dimers in superconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ir</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>Pt</mml:mi><mml:mo>,</mml:mo><mml:mi>Rh</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2018 Runze Yu
Soham Banerjee
Hechang Lei
R. Sinclair
Milinda Abeykoon
Haidong Zhou
C. Petrović
Zurab Guguchia
Emil S. Božin
+ PDF Chat The Elements of Statistical Learning 2009 Trevor Hastie
Robert Tibshirani
Jerome H. Friedman