Multigap Superconductivity in RbCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> Investigated Using μSR Measurements

Type: Article

Publication Date: 2018-11-16

Citations: 17

DOI: https://doi.org/10.7566/jpsj.87.124705

Abstract

The superconducting properties of the recently discovered double Fe$_2$As$_2$ layered high-$T_c$ superconductor RbCa$_2$Fe$_4$As$_4$F$_2$ with $T_c\approx$ 30~K have been investigated using magnetization, heat capacity, transverse-field (TF) and zero-field (ZF) muon-spin rotation/relaxation ($\mu$SR) measurements. Our low field magnetization measurements and heat capacity (C$_p$) reveal an onset of bulk superconductivity with $T_{\bf c}\sim$ 30.0(4) K. Furthermore, the heat capacity exhibits a jump at $T_{\bf c}$ of $\Delta$C$_p$/$T_{\bf c}$=94.6 (mJ/mole-K$^2$) and no clear effect of applied magnetic fields was observed on C$_p$(T) up to 9 T between 2 K and 5 K. Our analysis of the TF-$\mu$SR results shows that the temperature dependence of the magnetic penetration depth is better described by a two-gap model, either isotropic $s$+$s$-wave or $s$+$d$-wave than a single gap isotropic $s$-wave or $d$-wave model for the superconducting gap. The presence of two superconducting gaps in RbCa$_2$Fe$_4$As$_4$F$_2$ suggests a multiband nature of the superconductivity, which is consistent with the multigap superconductivity observed in other Fe-based superconductors, including ACa$_2$Fe$_4$As$_4$F$_2$ (A=K and Cs). Furthermore, from our TF-$\mu$SR study we have estimated an in-plane penetration depth $\lambda_{\mathrm{ab}}$$(0)$ =231.5(3) nm, superconducting carrier density $n_s = 7.45 \times 10^{26}~ $m$^{-3}$, and carrier's effective-mass $m^*$ = 2.45\textit{m}$_{e}$. Our ZF $\mu$SR measurements do not reveal a clear sign of time reversal symmetry breaking at $T_{\bf c}$, but the temperature dependent relaxation between 150 K and 1.2 K might indicate the presence of spin-fluctuations. The results of our present study have been compared with those reported for other Fe pnictide superconductors.

Locations

  • Journal of the Physical Society of Japan - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Multigap nodeless superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CsCa</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> probed by heat transport 2019 Yuan Huang
Z. C. Wang
Yijun Yu
Jingen Ni
Q. Li
Erjian Cheng
Guang‐Han Cao
Shiyan Li
+ PDF Chat Giant anisotropy in superconducting single crystals of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CsCa</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Fe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">As</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2019 Zhicheng Wang
Yi Liu
Siqi Wu
Ye-Ting Shao
Zhi Ren
Guang‐Han Cao
+ PDF Chat Strong-Coupling Spin-Singlet Superconductivity with Multiple Full Gaps in Hole-Doped Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub>Probed by<sup>57</sup>Fe-NMR 2009 Mitsuharu Yashima
H. Nishimura
Hidekazu Mukuda
Yoshio Kitaoka
Kiichi Miyazawa
Parasharam M. Shirage
Kunihiro Kihou
T. Ito
Hiroshi Eisaki
Akira Iyo
+ PDF Chat Multigap superconductivity in ThAsFeN investigated using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi mathvariant="bold">μ</mml:mi></mml:mrow><mml:mi mathvariant="bold">SR</mml:mi></mml:mrow></mml:math> measurements 2017 D. T. Adroja
A. Bhattacharyya
Pabitra Kumar Biswas⃰
M. Smidman
A. D. Hillier
Huican Mao
Huiqian Luo
Guang‐Han Cao
Zhicheng Wang
Cao Wang
+ Probing Bulk Superconducting Order Parameter in Ba(K)Fe$_2$As$_2$ by Four Complementary Techniques 2016 A. V. Muratov
T. E. Kuzmicheva
A. V. Sadakov
S. Yu. Gavrilkin
D. A. Knyazev
S. A. Kuzmichev
Yu. A. Aleshchenko
A. A. Kordyuk
V. M. Pudalov
Mahmoud Abdel‐Hafiez
+ PDF Chat Multigap superconductivity in single crystals of Ba<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>0.65</mml:mn></mml:mrow></mml:msub></mml:math>Na<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>0.35</mml:mn></mml:mrow></mml:msub></mml:math>Fe<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub… 2011 A. K. Pramanik
M. Abdel‐Hafiez
Saicharan Aswartham
A. U. B. Wolter
S. Wurmehl
V. Kataev
B. Büchner
+ PDF Chat Signature of multigap nodeless superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CaKFe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2017 Pabitra Kumar Biswas⃰
Akira Iyo
Yoshiyuki Yoshida
Hiroshi Eisaki
Kenji Kawashima
A. D. Hillier
+ PDF Chat Possible Superconductivity above 25 K in Single-Crystalline Co-Doped BaFe<sub>2</sub>As<sub>2</sub> 2009 Yasuyuki Nakajima
Toshihiro Taen
T. Tamegai
+ PDF Chat Influence of Gap Structures to Specific Heat in Oriented Magnetic Fields: Application to the Orbital Dependent Superconductor, Sr<sub>2</sub>RuO<sub>4</sub> 2004 Hiroaki Kusunose
+ Superconductivity at 35 K in an oxyarsenide with double FeAs layers 2016 Zhicheng Wang
Chao-Yang He
Siqi Wu
Zhang‐Tu Tang
Yi Liu
Abduweli Ablimit
Chunmu Feng
Guang‐Han Cao
+ PDF Chat Single-Crystal Growth and Extremely High <i>H</i><sub>c2</sub> of 12442-Type Fe-Based Superconductor KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> 2019 Teng Wang
J. J. Chu
Hua Jin
Jiaxin Feng
Lingling Wang
Yekai Song
Chi Zhang
Xuguang Xu
Wei Li
Zhuojun Li
+ PDF Chat Superconductivity in undoped single crystals of BaFe<sub>2</sub>As<sub>2</sub>: field and current dependence 2009 J. S. Kim
Thomas Bläsius
E. G. Kim
G. R. Stewart
+ Doping evolution of the anisotropic upper critical fields in iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$ 2017 M. A. Tanatar
Yong Liu
J. Jaroszyński
J. S. Brooks
T. A. Lograsso
R. Prozorov
+ Multiband superconductivity and a deep gap minimum evidenced by specific heat in KCa$_2$(Fe$_{1-x}$Ni$_x$)$_4$As$_4$F$_2$ 2023 Yiwen Li
Zhengyan Zhu
Yongze Ye
Wenshan Hong
Yang Li
Shiliang Li
Huiqian Luo
Wen Hai‐Hu
+ PDF Chat Superconductivity in KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> with Separate Double Fe<sub>2</sub>As<sub>2</sub> Layers 2016 Zhicheng Wang
Chao-Yang He
Siqi Wu
Zhang‐Tu Tang
Yi Liu
Abduweli Ablimit
Chunmu Feng
Guang‐Han Cao
+ PDF Chat Unconventional Multi-gap Superconductivity and Antiferromagnetic Spin Fluctuations in New Iron-arsenide LaFe<sub>2</sub>As<sub>2</sub> in Heavily Electron-doped Regime 2019 T. Kouchi
Mitsuharu Yashima
Hidekazu Mukuda
Shigeyuki Ishida
Hiroshi Eisaki
Yoshiyuki Yoshida
Kenji Kawashima
Akira Iyo
+ PDF Chat Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba <sub>0.72</sub> K <sub>0.28</sub> Fe <sub>2</sub> As <sub>2</sub> : NMR in a single crystal 2009 K. Matano
Z. Li
G. L. Sun
Dunlu Sun
C. T. Lin
Masanori Ichioka
Guo-qing Zheng
+ PDF Chat Nodal Superconducting Gap Structure in the Quasi-One-Dimensional Cs<sub>2</sub>Cr<sub>3</sub>As<sub>3</sub> Investigated Using μSR Measurements 2017 D. T. Adroja
A. Bhattacharyya
M. Smidman
A. D. Hillier
Yu Feng
Bingying Pan
Jun Zhao
M. R. Lees
A. M. Strydom
Pabitra Kumar Biswas⃰
+ PDF Chat Superconductivity at 35 K by self doping in RbGd<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>O<sub>2</sub> 2017 Zhicheng Wang
Chao-Yang He
Siqi Wu
Zhang‐Tu Tang
Yi Liu
Abduweli Ablimit
Tao Qian
Chunmu Feng
Zhu‐An Xu
Guang‐Han Cao
+ PDF Chat Electronic structure and coexistence of superconductivity with magnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Rb</mml:mi><mml:mi>Eu</mml:mi><mml:msub><mml:mi mathvariant="normal">Fe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">As</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2021 T. K. Kim
K. S. Pervakov
D. V. Evtushinsky
Sung Won Jung
G. Poelchen
K. Kummer
В. А. Власенко
A. V. Sadakov
A. S. Usoltsev
V. M. Pudalov

Works That Cite This (9)

Action Title Year Authors
+ Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds (Review article) 2023 Erik Piatti
Daniele Torsello
G. Ghigo
D. Daghero
+ PDF Chat Multigap nodeless superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CsCa</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> probed by heat transport 2019 Yuan Huang
Z. C. Wang
Yijun Yu
Jingen Ni
Q. Li
Erjian Cheng
Guang‐Han Cao
Shiyan Li
+ PDF Chat Giant anisotropy in superconducting single crystals of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CsCa</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Fe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">As</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2019 Zhicheng Wang
Yi Liu
Siqi Wu
Ye-Ting Shao
Zhi Ren
Guang‐Han Cao
+ PDF Chat Observation of a neutron spin resonance in the bilayered superconductor CsCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> 2020 D. T. Adroja
Stephen J. Blundell
Franz Lang
Huiqian Luo
Z-C Wang
Guang‐Han Cao
+ PDF Chat Strong Pauli paramagnetic effect in the upper critical field of KCa2Fe4As4F2 2019 Teng Wang
Chi Zhang
Liangcai Xu
Jinhua Wang
Shan Jiang
Zengwei Zhu
Zhaosheng Wang
J. J. Chu
Jiaxin Feng
Lingling Wang
+ PDF Chat Single-Crystal Growth and Extremely High <i>H</i><sub>c2</sub> of 12442-Type Fe-Based Superconductor KCa<sub>2</sub>Fe<sub>4</sub>As<sub>4</sub>F<sub>2</sub> 2019 Teng Wang
J. J. Chu
Hua Jin
Jiaxin Feng
Lingling Wang
Yekai Song
Chi Zhang
Xuguang Xu
Wei Li
Zhuojun Li
+ PDF Chat Low temperature specific heat of 12442-type KCa2Fe4As4F2 single crystals 2020 Teng Wang
J. J. Chu
Jiaxin Feng
Lingling Wang
Xuguang Xu
Wei Li
Hai‐Hu Wen
Xiaosong Liu
Gang Mu
+ Evidence of electron interaction with an unidentified bosonic mode in superconductor CsCa2Fe4As4F2 2024 Peng Li
Sen Liao
Zhicheng Wang
Huaxun Li
Shiwu Su
Jiakang Zhang
Ziyuan Chen
Zhicheng Jiang
Zhengtai Liu
Lexian Yang
+ The pairing symmetry in quasi-one-dimensional superconductor Rb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si120.svg" display="inline" id="d1e490"><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>Mo<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si121.svg" display="inline" id="d1e498"><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>As<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" … 2023 Žiga Gosar
Tina Arh
Kevin Jaksetič
A. Zorko
Wenhao Liu
Hanlin Wu
Chennan Wang
H. Luetkens
Bing Lv
Denis Arčon

Works Cited by This (55)

Action Title Year Authors
+ PDF Chat Jump in specific heat at the superconducting transition temperature in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>Ba</mml:mtext><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow><mml:mi>x</mml:mi></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:… 2009 Sergey L. Bud’ko
Ni Ni
P. C. Canfield
+ PDF Chat Angle-resolved photoemission spectroscopy of superconducting LiFeAs: Evidence for strong electron-phonon coupling 2011 A. A. Kordyuk
V. B. Zabolotnyy
D. V. Evtushinsky
T. K. Kim
И. В. Морозов
Miodrag L. Kulić
R. Follath
G. Behr
B. Büchner
С. В. Борисенко
+ PDF Chat Superconducting state coexisting with a phase-separated static magnetic order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mtext>Ba</mml:mtext><mml:mo>,</mml:mo><mml:mtext>K</mml:mtext></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mtext>As</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:… 2009 T. Goko
A. A. Aczel
E. Baggio‐Saitovitch
Sergey L. Bud’ko
P. C. Canfield
J. P. Carlo
Genfu Chen
Pengcheng Dai
Andreas Hamann
W. Z. Hu
+ PDF Chat Two-Gap Superconductivity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="bold">K</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>: A Complementary Study of the Magnetic Penetration Depth by Muon-Spin Rotation… 2009 R. Khasanov
D. V. Evtushinsky
A. Amato
H.‐H. Klauß
H. Luetkens
Ch. Niedermayer
B. Büchner
G. L. Sun
C. T. Lin
J. T. Park
+ PDF Chat Superconducting ground state of quasi-one-dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cr</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">As</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>investigated using<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi><mml:mtext>SR</mml:mtext></mml:math>measurements 2015 D. T. Adroja
A. Bhattacharyya
Mark Telling
Yu Feng
M. Smidman
Bingying Pan
Jun Zhao
A. D. Hillier
F. L. Pratt
A. M. Strydom
+ PDF Chat Antiferromagnetic order and spin dynamics in iron-based superconductors 2015 Pengcheng Dai
+ PDF Chat Detection of Time-Reversal Symmetry Breaking in the Noncentrosymmetric Superconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Re</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msub><mml:mi>Zr</mml:mi></mml:mrow></mml:math>Using Muon-Spin Spectroscopy 2014 R. P. Singh
A. D. Hillier
B. Mazidian
Jorge Quintanilla
James F. Annett
D. McK. Paul
G. Balakrishnan
M. R. Lees
+ PDF Chat Properties of the ideal Ginzburg-Landau vortex lattice 2003 Ernst Helmut Brandt
+ PDF Chat Momentum-resolved superconducting gap in the bulk of Ba<sub>1−<i>x</i></sub>K<sub><i>x</i></sub>Fe<sub>2</sub>As<sub>2</sub>from combined ARPES and μSR measurements 2009 D. V. Evtushinsky
D. S. Inosov
V. B. Zabolotnyy
Maryna Viazovska
R. Khasanov
A. Amato
H-H Klauss
H. Luetkens
Ch. Niedermayer
G. L. Sun
+ PDF Chat A New Layered Iron Arsenide Superconductor: (Ca,Pr)FeAs<sub>2</sub> 2014 Hiroyuki Yakita
Hiraku Ogino
Tomoyuki Okada
Akiyasu Yamamoto
K. Kishio
Tetsuya Tohei
Yuichi Ikuhara
Yoshito Gotoh
Hiroshi Fujihisa
Kunimitsu Kataoka