Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data

Type: Article

Publication Date: 2013-06-24

Citations: 5

DOI: https://doi.org/10.1088/0266-5611/29/7/075017

Abstract

In the framework of noisy quantum homodyne tomography with efficiency parameter 1/2 < η ≤ 1, we propose a novel estimator of a quantum state whose density matrix elements ρ m,n decrease like Ce -B(m+n) r/2 , for fixed C ≥ 1, B > 0 and 0 < r ≤ 2. On the contrary to previous works, we focus on the case where r, C and B are unknown.The procedure estimates the matrix coefficients by a projection method on the pattern functions, and then by soft-thresholding the estimated coefficients.We prove that under the L 2 -loss our procedure is adaptive rate-optimal, in the sense that it achieves the same rate of conversgence as the best possible procedure relying on the knowledge of (r, B, C).Finite sample behaviour of our adaptive procedure are explored through numerical experiments.

Locations

  • Inverse Problems - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat State estimation in quantum homodyne tomography with noisy data 2008 Jean‐Marie Aubry
Cristina Butucea
Katia Méziani
+ Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2015 Cristina Butucea
M. Guta
L.M. Artiles
+ PDF Chat Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography 2018 Karim Lounici
Katia Méziani
Gabriel Peyré
+ PDF Chat Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2007 Cristina Butucea
Mădălin Guţǎ
L.M. Artiles
+ Optimal large-scale quantum state tomography with Pauli measurements 2016 Tommaso Cai
Donggyu Kim
Yazhen Wang
Ming Yuan
Harrison H. Zhou
+ Practical adaptive quantum tomography 2017 Christopher Granade
Christopher Ferrie
Steven T. Flammia
+ PDF Chat Adaptive quantum tomography 2016 S. S. Straupe
+ Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data 2006 Katia Méziani
+ Improvement of Estimation Precision by Adaptive Design of Experiments 2014 Takanori Sugiyama
+ Efficient adaptive MCMC implementation for Pseudo-Bayesian quantum tomography 2021 Tien Mai
+ PDF Chat Quantum state and process tomography via adaptive measurements 2016 Hengyan Wang
Wenqiang Zheng
Nengkun Yu
Keren Li
Dawei Lu
Tao Xin
Carson Li
Zhengfeng Ji
David W. Kribs
Bei Zeng
+ PDF Chat Efficient tomography with unknown detectors 2017 L. Motka
Martin Paúr
J. Řeháček
Z. Hradil
L. L. Sánchez-Soto
+ Numerical Estimation Schemes for Quantum Tomography 2013 Yong Siah Teo
+ Numerical Estimation Schemes for Quantum Tomography 2013 Yong Siah Teo
+ PDF Chat Optimal and two-step adaptive quantum detector tomography 2022 Shuixin Xiao
Yuanlong Wang
Daoyi Dong
Jun Zhang
+ PDF Chat Adaptive compressive tomography: A numerical study 2019 Dae‐Ro Ahn
Yong Siah Teo
Hyunseok Jeong
Dominik Koutný
J. Řeháček
Z. Hradil
Gerd Leuchs
L. L. Sánchez-Soto
+ PDF Chat Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data 2008 Katia Méziani
+ PDF Chat Pseudo-Bayesian quantum tomography with rank-adaptation 2016 The Tien Mai
Pierre Alquier
+ PDF Chat Adaptive quantum state tomography with iterative particle filtering 2021 Syed Muhammad Kazim
Ahmad Farooq
Junaid ur Rehman
Hyundong Shin
+ PDF Chat Efficient tomography of a quantum many-body system 2017 B. P. Lanyon
Christine Maier
Milan Holzäpfel
Tillmann Baumgratz
Cornelius Hempel
Petar Jurcevic
Ish Dhand
Anton S. Buyskikh
Andrew J. Daley
M. Cramer