Linearly Converging Error Compensated SGD

Type: Article

Publication Date: 2020-01-01

Citations: 19

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Linearly Converging Error Compensated SGD 2020 Eduard Gorbunov
Dmitry Kovalev
Dmitry I. Makarenko
Peter Richtárik
+ Distributed Methods with Absolute Compression and Error Compensation 2022 Marina Danilova
Eduard Gorbunov
+ On Biased Compression for Distributed Learning 2020 Aleksandr Beznosikov
Samuel Horváth
Peter Richtárik
Mher Safaryan
+ PDF Chat Truncated Non-Uniform Quantization for Distributed SGD 2024 Guangfeng Yan
Li Tan
Yuanzhang Xiao
Congduan Li
Linqi Song
+ Communication-Censored Distributed Stochastic Gradient Descent 2019 Weiyu Li
Tianyi Chen
Liping Li
Zhaoxian Wu
Qing Ling
+ Error Compensated Distributed SGD Can Be Accelerated 2020 Xun Qian
Peter Richtárik
Tong Zhang
+ Distributed and Stochastic Optimization Methods with Gradient Compression and Local Steps 2021 Eduard Gorbunov
+ DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression 2019 Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
+ DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression 2019 Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
+ PDF Chat Communication-Censored Distributed Stochastic Gradient Descent 2021 Weiyu Li
Zhaoxian Wu
Tianyi Chen
Liping Li
Qing Ling
+ Error Compensated Loopless SVRG, Quartz, and SDCA for Distributed Optimization 2021 Xun Qian
Hanze Dong
Peter Richtárik
Tong Zhang
+ Stochastic Distributed Learning with Gradient Quantization and Variance Reduction 2019 Samuel Horváth
Dmitry Kovalev
Konstantin Mishchenko
Sebastian U. Stich
Peter Richtárik
+ Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach 2022 Naifu Zhang
Meixia Tao
Jia Wang
Fan Xu
+ PDF Chat Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach 2022 Naifu Zhang
Meixia Tao
Jia Wang
Fan Xu
+ PDF Chat CD-SGD: Distributed Stochastic Gradient Descent with Compression and Delay Compensation 2021 Enda Yu
Dezun Dong
Yemao Xu
Shuo Ouyang
Xiangke Liao
+ On Biased Compression for Distributed Learning. 2020 Aleksandr Beznosikov
Samuel Horváth
Peter Richtárik
Mher Safaryan
+ Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization 2018 Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
+ Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization 2018 Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
+ On Communication Compression for Distributed Optimization on Heterogeneous Data 2020 Sebastian U. Stich
+ On the Convergence of Quantized Parallel Restarted SGD for Serverless Learning 2020 Feijie Wu
Shiqi He
Yutong Yang
Haozhao Wang
Zhihao Qu
Song Guo

Works That Cite This (18)

Action Title Year Authors
+ Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices 2021 Max Ryabinin
Eduard Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
+ Permutation Compressors for Provably Faster Distributed Nonconvex Optimization 2021 Rafał Szlendak
Alexander Tyurin
Peter Richtárik
+ EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback 2021 Ilyas Fatkhullin
Igor Sokolov
Eduard Gorbunov
Zhize Li
Peter Richtárik
+ A Field Guide to Federated Optimization 2021 Jianyu Wang
Zachary Charles
Zheng Xu
Gauri Joshi
H. Brendan McMahan
Blaise Agüera y Arcas
Maruan Al-Shedivat
Galen Andrew
Salman Avestimehr
Katharine Daly
+ On Communication Compression for Distributed Optimization on Heterogeneous Data 2020 Sebastian U. Stich
+ Parallel and Distributed algorithms for ML problems 2020 Darina Dvinskikh
Alexander Gasnikov
Alexander Rogozin
Aleksandr Beznosikov
+ Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients 2021 Aritra Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
+ What Do We Mean by Generalization in Federated Learning? 2021 Honglin Yuan
Warren R. Morningstar
Lin Ning
Karan Singhal
+ MARINA: Faster Non-Convex Distributed Learning with Compression 2021 Eduard Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
+ Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks 2021 Dmitry Kovalev
Elnur Gasanov
Peter Richtárik
Alexander Gasnikov

Works Cited by This (0)

Action Title Year Authors