Type: Article
Publication Date: 2010-08-01
Citations: 3
DOI: https://doi.org/10.1063/1.3479748
It is well-known that a quantum measurement can enhance the transition probability between two quantum states. Such a measurement operates after preparation of the initial state and before postselecting for the final state. Here we analyze this kind of scenario in detail and determine which probability distributions on a finite number of outcomes can occur for an intermediate measurement with postselection, for given values of the following two quantities: (i) the transition probability without measurement, (ii) the transition probability with measurement. This is done for both the cases of projective measurements and of generalized measurements. Among other constraints, this quantifies a trade-off between high randomness in a projective measurement and high measurement-modified transition probability. An intermediate projective measurement can enhance a transition probability such that the failure probability decreases by a factor of up to 2, but not by more.