Logarithmically modified scaling of temperature structure functions in thermal convection

Type: Article

Publication Date: 2004-12-07

Citations: 4

DOI: https://doi.org/10.1209/epl/i2004-10373-4

Abstract

Using experimental data on thermal convection, obtained at a Rayleigh number of 1.5 ×1011, it is shown that the temperature structure functions ⟨ΔTrp⟩, where ΔTr is the absolute value of the temperature increment over a distance r, can be well represented in an intermediate range of scales by rζpφ(r)p, where the ζp are the scaling exponents appropriate to the passive scalar problem in hydrodynamic turbulence and the function φ(r) = 1 − a(ln r/rh)2. Measurements are made in the midplane of the apparatus near the sidewall, but outside the boundary layer.

Locations

  • EPL (Europhysics Letters) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Fine-scale statistics of temperature and its derivatives in convective turbulence 2008 Mohammad S. Emran
Jörg Schumacher
+ PDF Chat Scaling in large Prandtl number turbulent thermal convection 2002 B. Dubrulle
+ PDF Chat Logarithmic corrections to scaling in turbulent thermal convection 2001 B. Dubrulle
+ PDF Chat Scaling in thermal convection: a unifying theory 2000 Siegfried Großmann
Detlef Lohse
+ PDF Chat Scalings of heat transport and energy spectra of turbulent Rayleigh-Bénard convection in a large-aspect-ratio box 2017 Arnab Kumar De
V. Eswaran
Pankaj Kumar Mishra
+ PDF Chat Scaling and spatial intermittency of thermal dissipation in turbulent convection 2019 Shashwat Bhattacharya
Ravi Samtaney
Mahendra K. Verma
+ PDF Chat Transition to ultimate Rayleigh–Bénard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions 2018 Dominik Krug
Xiaojue Zhu
Daniel Chung
Ivan Marušić
Roberto Verzicco
Detlef Lohse
+ Logarithmic scaling of higher-order temperature moments in the atmospheric surface layer 2022 Kelly Y. Huang
Matthew Fu
Clayton P. Byers
Andrew D. Bragg
Gabriel G. Katul
+ PDF Chat Logarithmic Mean Temperature Profiles and Their Connection to Plume Emissions in Turbulent Rayleigh-Bénard Convection 2015 Erwin P. van der Poel
Rodolfo Ostilla–Mónico
Roberto Verzicco
Siegfried Großmann
Detlef Lohse
+ PDF Chat Complexity of viscous dissipation in turbulent thermal convection 2018 Shashwat Bhattacharya
Ambrish Pandey
Abhishek Kumar
Mahendra K. Verma
+ Prediction of temperature distribution in turbulent Rayleigh-Benard convection 2014 Zhen-Su She
Xi Chen
Hong-Yue Zou
Yun Bao
Jun Chen
Fazle Hussain
+ PDF Chat Fluctuations of temperature gradients in turbulent thermal convection 2005 Katepalli R. Sreenivasan
A. Bershadskii
Joseph Niemela
+ PDF Chat Similarities between the structure functions of thermal convection and hydrodynamic turbulence 2019 Shashwat Bhattacharya
Shubhadeep Sadhukhan
Anirban Guha
Mahendra K. Verma
+ Scalings of heat transport and energy spectra of turbulent Rayleigh-Benard convection in a large-aspect-ratio box 2017 Arnab Kumar De
V. Eswaran
Pankaj K. Mishra
+ Similarities between characteristics of convective turbulence in confined and extended domains 2022 Ambrish Pandey
Dmitry Krasnov
Jörg Schumacher
Ravi Samtaney
Katepalli R. Sreenivasan
+ Applicability of Taylor's hypothesis in thermally driven turbulence 2018 Abhishek Kumar
Mahendra K. Verma
+ PDF Chat Logarithmic temperature profiles in the ultimate regime of thermal convection 2012 Siegfried Großmann
Detlef Lohse
+ Scalings of heat transport and energy spectra of turbulent Rayleigh-Benard convection in a large-aspect-ratio box 2017 Arnab Kumar De
V. Eswaran
Pankaj Kumar Mishra
+ PDF Chat Transition phenomena in unstably stratified turbulent flows 2011 Moshe Bukai
A. Eidelman
T. Elperin
N. Kleeorin
I. Rogachevskii
I. Sapir-Katiraie
+ PDF Chat Turbulent mesoscale convection in the Boussinesq limit and beyond 2025 Shadab Alam
Dmitry Krasnov
Ambrish Pandey
John Panickacheril John
Roshan Samuel
Philipp P. Vieweg
Jörg Schumacher

Works That Cite This (0)

Action Title Year Authors