The Hyperbolic Yang–Mills Equation for Connections in an Arbitrary Topological Class

Type: Article

Publication Date: 2018-07-17

Citations: 16

DOI: https://doi.org/10.1007/s00220-018-3205-x

Locations

  • Communications in Mathematical Physics - View
  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The hyperbolic Yang–Mills equation in the caloric gauge : local well-posedness and control of energy-dispersed solutions 2020 Sung‐Jin Oh
Daniel Tataru
+ PDF Chat The threshold conjecture for the energy critical hyperbolic Yang–Mills equation 2021 Sung‐Jin Oh
Daniel Tataru
+ PDF Chat The Yang-Mills heat flow and the caloric gauge 2022 Sung‐Jin Oh
Daniel Tataru
+ The Yang--Mills heat flow and the caloric gauge 2017 Sung‐Jin Oh
Daniel Tataru
+ PDF Chat The threshold theorem for the $(4+1)$-dimensional Yang–Mills equation: An overview of the proof 2018 Sung‐Jin Oh
Daniel Tataru
+ The threshold conjecture for the energy critical hyperbolic Yang--Mills equation 2017 Sung‐Jin Oh
Daniel Tataru
+ The Threshold Theorem for the $(4+1)$-dimensional Yang--Mills equation: an overview of the proof 2017 Sung‐Jin Oh
Daniel Tataru
+ The Threshold Theorem for the $(4+1)$-dimensional Yang--Mills equation: an overview of the proof 2017 Sung‐Jin Oh
Daniel Tataru
+ Transport optimal : régularité et applications 2012 Thomas Gallouët
+ Global existence and convergence of smooth solutions to Yang-Mills gradient flow over compact four-manifolds 2014 Paul M. N. Feehan
+ On the Existence and Regularity Theory of Yang-Mills Fields 2017 Casey Lynn Kelleher
+ The global existence of Yang-Mills fields on curved space-times 2013 Sari Ghanem
+ Infinite time bubbling for the $SU(2)$ Yang-Mills heat flow on $\mathbb{R}^4$ 2022 Yannick Sire
Juncheng Wei
Youquan Zheng
+ A generalization of the Cai--Galloway splitting theorem to smooth metric measure spaces 2013 Jeffrey S. Case
Peng Wu
+ Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy 2015 Joachim Krieger
Daniel Tataru
+ Global well-posedness for the Yang-Mills equation in $4+1$ dimensions. Small energy 2015 Joachim Krieger
Daniel Tataru
+ The resolution of the Yang–Mills Plateau problem in super-critical dimensions 2017 Mircea Petrache
Tristan Rivière
+ Erratum to “Global dynamics of a Yang-Mills field on an asymptotically hyperbolic space” 2016 Piotr Bizoń
Patryk Mach
+ PDF Chat On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures 2016 Davide Barilari
Ugo Boscain
G. Charlot
Robert W. Neel
+ PDF Chat On the analyticity of critical points of the Möbius energy 2018 Simon Blatt
Nicole Vorderobermeier