The third realization of the International Celestial Reference Frame by very long baseline interferometry

Type: Article

Publication Date: 2020-09-02

Citations: 62

DOI: https://doi.org/10.1051/0004-6361/202038368

Abstract

A new realization of the International Celestial Reference Frame (ICRF) is presented based on the work achieved by a working group of the International Astronomical Union (IAU) mandated for this purpose. This new realization follows the initial realization of the ICRF completed in 1997 and its successor, ICRF2, adopted as a replacement in 2009. The new frame, referred to as ICRF3, is based on nearly 40 years of data acquired by very long baseline interferometry at the standard geodetic and astrometric radio frequencies (8.4 and 2.3 GHz), supplemented with data collected at higher radio frequencies (24 GHz and dual-frequency 32 and 8.4 GHz) over the past 15 years. State-of-the-art astronomical and geophysical modeling has been used to analyze these data and derive source positions. The modeling integrates, for the first time, the effect of the galactocentric acceleration of the solar system (directly estimated from the data) which, if not considered, induces significant deformation of the frame due to the data span. The new frame includes positions at 8.4 GHz for 4536 extragalactic sources. Of these, 303 sources, uniformly distributed on the sky, are identified as “defining sources” and as such serve to define the axes of the frame. Positions at 8.4 GHz are supplemented with positions at 24 GHz for 824 sources and at 32 GHz for 678 sources. In all, ICRF3 comprises 4588 sources, with three-frequency positions available for 600 of these. Source positions have been determined independently at each of the frequencies in order to preserve the underlying astrophysical content behind such positions. They are reported for epoch 2015.0 and must be propagated for observations at other epochs for the most accurate needs, accounting for the acceleration toward the Galactic center, which results in a dipolar proper motion field of amplitude 0.0058 milliarcsecond yr −1 (mas yr −1 ). The frame is aligned onto the International Celestial Reference System to within the accuracy of ICRF2 and shows a median positional uncertainty of about 0.1 mas in right ascension and 0.2 mas in declination, with a noise floor of 0.03 mas in the individual source coordinates. A subset of 500 sources is found to have extremely accurate positions, in the range of 0.03–0.06 mas, at the traditional 8.4 GHz frequency. Comparing ICRF3 with the recently released Gaia Celestial Reference Frame 2 in the optical domain, there is no evidence for deformations larger than 0.03 mas between the two frames, in agreement with the ICRF3 noise level. Significant positional offsets between the three ICRF3 frequencies are detected for about 5% of the sources. Moreover, a notable fraction (22%) of the sources shows optical and radio positions that are significantly offset. There are indications that these positional offsets may be the manifestation of extended source structures. This third realization of the ICRF was adopted by the IAU at its 30th General Assembly in August 2018 and replaced the previous realization, ICRF2, on January 1, 2019.

Locations

  • Astronomy and Astrophysics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Springer Link (Chiba Institute of Technology) - View - PDF
  • Publication Database GFZ (GFZ German Research Centre for Geosciences) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The K-band (24 GHz) Celestial Reference Frame determined from Very Long Baseline Interferometry sessions conducted over the past 20 years 2023 Hana Krásná
David Gordon
Aletha de Witt
C. S. Jacobs
+ PDF Chat Imaging Sources in the Third Realization of the International Celestial Reference Frame 2021 Lucas Hunt
Megan Johnson
Phil Cigan
David Gordon
John G. Spitzak
+ PDF Chat A celestial reference frame derived from observations with the Very Long Baseline Interferometry Global Observing System 2024 Hana Krásná
C. S. Jacobs
Matthias Schartner
P. Charlot
+ PDF Chat VLBI celestial and terrestrial reference frames VIE2022b 2023 Hana Krásná
L. Baldreich
Johannes Böhm
Sigrid Böhm
Jakob Gruber
A. Hellerschmied
F. Jaron
L. Kern
D. Mayer
A. Nothnagel
+ The Next Generation Celestial Reference Frame 2019 Megan Johnson
F. K. Schinzel
Jeremy Darling
Nathan J. Secrest
Bryan N. Dorland
A. L. Fey
Leonid Petrov
Anthony Beasley
Walter Brisken
John Gipson
+ The Next Generation Celestial Reference Frame 2019 Megan Johnson
F. K. Schinzel
Jeremy Darling
Nathan J. Secrest
Bryan N. Dorland
A. L. Fey
Leonid Petrov
A. J. Beasley
Walter Brisken
John Gipson
+ PDF Chat Realization of a multifrequency celestial reference frame through a combination of normal equation systems 2019 Maria Karbon
A. Nothnagel
+ Imaging Sources in the Third Realization of the International Celestial Reference Frame 2021 Lucas Hunt
Megan Johnson
Phil Cigan
David Gordon
John G. Spitzak
+ Evaluate the ICRF3 axes stability via extragalactic source position time series 2022 Niu Liu
S. Lambert
Felicitas Arias
Jiacheng Liu
Zi Qiang Zhu
+ PDF Chat Evaluation of the ICRF stability from a position time series analysis 2021 Niu Liu
S. Lambert
E. F. Arias
Jiacheng Liu
Zi Zhu
+ VLBI Celestial and Terrestrial Reference Frames VIE2022b 2022 Hana Krásná
L. Baldreich
Johannes Böhm
Sigrid Böhm
Jakob Gruber
A. Hellerschmied
F. Jaron
L. Kern
David J. Mayer
A. Nothnagel
+ The ICRF-3: Status, plans, and progress on the next generation International Celestial Reference Frame 2015 Zinovy Malkin
C. S. Jacobs
E. F. Arias
D. A. Boboltz
Johannes Böhm
S. Bolotin
G. Bourda
Patrick Charlot
Aletha de Witt
A. L. Fey
+ PDF Chat The ICRF-3: Status, plans, and progress on the next generation International Celestial Reference Frame 2014 Zinovy Malkin
Carolyn Jacobs
F. Arias
D. A. Boboltz
Johannes Böhm
S. Bolotin
G. Bourda
P. Charlot
Aletha de Witt
Fey A.
+ Radio and optical realizations of celestial reference frames 2006 Sébastien Lambert
C. Le Poncin-Lafitte
S. Bouquillon
+ Radio and optical realizations of celestial reference frames 2006 S. Lambert
S. Bouquillon
C. Le Poncin-Lafitte
C. Barache
J. Souchay
+ PDF Chat Test of source selection for constructing a more stable and uniform celestial reference frame 2016 Niu Liu
Jiacheng Liu
Zi Zhu
+ PDF Chat The influence of radio-extended structures on offsets between the optical and VLBI positions of sources in the ICRF2 2011 J. I. B. Camargo
A. H. Andrei
M. Assafin
R. Vieira-Martins
D. N. da Silva Neto
+ PDF Chat Characterization of long baseline calibrators at 2.3 GHz 2011 Faith Hungwe
R. Ojha
R. S. Booth
M. F. Bietenholz
A. Collioud
P. Charlot
D. A. Boboltz
A. L. Fey
+ PDF Chat Testing general relativity with geodetic VLBI 2018 Oleg Titov
Anastasiia Girdiuk
S. B. Lambert
J. E. J. Lovell
Lucia McCallum
Stanislav S. Shabala
Lucia McCallum
David J. Mayer
Matthias Schartner
Aletha de Witt
+ Analysis of Present Status of ICRF and ICRF in Future 2007 Shubo Qiao
Jinling Li

Works That Cite This (34)

Action Title Year Authors
+ PDF Chat The Science of Fundamental Catalogs 2021 Sergei M. Kopeikin
В. В. Макаров
+ PDF Chat Realization of a multifrequency celestial reference frame through a combination of normal equation systems 2019 Maria Karbon
A. Nothnagel
+ PDF Chat Gaia Early Data Release 3: Acceleration of the solar system from Gaia astrometry 2021 S. A. Klioner
F. Mignard
L. Lindegren
U. Bastian
P. J. McMillan
J. Hernández
D. Hobbs
M. Ramos-Lerate
M. Biermann
A. Bombrun
+ PDF Chat Multiwavelength View of the Close-by GRB 190829A Sheds Light on Gamma-Ray Burst Physics 2022 O. S. Salafia
M. E. Ravasio
Jun Yang
Tao An
M. Orienti
G. Ghirlanda
Lara Nava
M. Giroletti
P. Mohan
R. Spinelli
+ PDF Chat <i>Gaia</i>Early Data Release 3 2020 L. Lindegren
S. A. Klioner
J. Hernández
A. Bombrun
M. Ramos-Lerate
H. Steidelmüller
U. Bastian
M. Biermann
A. de Torres
E. Gerlach
+ PDF Chat The MSPSR$\pi$ catalogue: VLBA astrometry of 18 millisecond pulsars 2023 Hao Ding
Adam T. Deller
B. W. Stappers
T. Joseph W. Lazio
D. L. Kaplan
Shami Chatterjee
W. Brisken
J. M. Cordes
P. C. C. Freire
Emmanuel Fonseca
+ PDF Chat Observing UT1-UTC with VGOS 2021 Rüdiger Haas
E. Varenius
Saho Matsumoto
Matthias Schartner
+ PDF Chat Resolving VLBI correlator ambiguity in the time delay model improves precision of geodetic measurements 2020 Oleg Titov
Alexey Melnikov
Y. Lopez
+ PDF Chat The ASKAP Variables and Slow Transients (VAST) Pilot Survey 2021 Tara Murphy
D. L. Kaplan
A. Stewart
Andrew O’Brien
E. Lenc
Sergio Pintaldi
Joshua Pritchard
Dougal Dobie
Archibald Fox
James K. Leung
+ PDF Chat Evidence of the <i>Gaia</i>–VLBI position differences being related to radio source structure 2021 Minghui Xu
Susanne Lunz
J. M. Anderson
T. Savolainen
Nataliya Zubko
Harald Schuh