THE ERROR TERM IN THE SATO–TATE THEOREM OF BIRCH

Type: Article

Publication Date: 2019-02-08

Citations: 3

DOI: https://doi.org/10.1017/s0004972718001648

Abstract

We establish an error term in the Sato–Tate theorem of Birch. That is, for $p$ prime, $q=p^{r}$ and an elliptic curve $E:y^{2}=x^{3}+ax+b$ , we show that $$\begin{eqnarray}\#\{(a,b)\in \mathbb{F}_{q}^{2}:\unicode[STIX]{x1D703}_{a,b}\in I\}=\unicode[STIX]{x1D707}_{ST}(I)q^{2}+O_{r}(q^{7/4})\end{eqnarray}$$ for any interval $I\subseteq [0,\unicode[STIX]{x1D70B}]$ , where the quantity $\unicode[STIX]{x1D703}_{a,b}$ is defined by $2\sqrt{q}\cos \unicode[STIX]{x1D703}_{a,b}=q+1-E(\mathbb{F}_{q})$ and $\unicode[STIX]{x1D707}_{ST}(I)$ denotes the Sato–Tate measure of the interval $I$ .

Locations

  • Bulletin of the Australian Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The error term in the Sato–Tate conjecture 2014 Jesse Thorner
+ A remark on the sato-tate conjecture 1970 A. P. Ogg
+ The Sato-Tate conjecture 2009 James Cogdell
Henry Kim
M. Ram Murty
+ PDF Chat The Sato-Tate conjecture 2006 Laurent Clozel
+ The Sato-Tate conjecture 2016
+ PDF Chat An Unconditional Explicit Bound on the Error Term in the Sato–tate Conjecture 2022 Alexandra Hoey
Jonas Iskander
Steven Jin
Fernando Trejos Suárez
+ Variations of the Sato-Tate Conjecture 2009 M. Ram Murty
+ On equidistribution of signs and the Sato-Tate conjecture 2014 Gabor Wiese
+ An unconditional explicit bound on the error term in the Sato-Tate conjecture. 2021 Alexandra Hoey
Jonas Iskander
Steven Jin
Fernando Trejos Suárez
+ An unconditional explicit bound on the error term in the Sato-Tate conjecture 2021 Alexandra Hoey
Jonas Iskander
Steven Jin
Fernando Trejos Suárez
+ PDF Chat Patterns of primes in the Sato–Tate conjecture 2019 Nate Gillman
Michael Kural
Alexandru Pascadi
Junyao Peng
Ashwin Sah
+ On the Sato-Tate Conjecture 1982 V. Kumar Murty
+ Moments of the error term in the Sato-Tate law for elliptic curves 2017 Stephan Baier
Neha Prabhu
+ Moments of the error term in the Sato-Tate law for elliptic curves 2017 Stephan Baier
Neha Prabhu
+ Correction: A remark on the component group of the Sato–Tate group 2025 Grzegorz Banaszak
Victoria Cantoral‐Farfán
+ On Effective Sato-Tate Distributions for Surfaces Arising from Products of Elliptic Curves 2023 Quanlin Chen
Eric Shen
+ An application of the effective Sato-Tate conjecture 2013 Alina Bucur
Kiran S. Kedlaya
+ PDF Chat An application of the effective Sato-Tate conjecture 2016 Alina Bucur
Kiran Kedlaya
+ A refined version of the Lang-Trotter Conjecture 2008 Stephan Baier
Nathan Jones
+ Variants of the Sato-Tate and Lang-Trotter Conjectures 2016 Kevin James