Fixed frequency eigenfunction immersions and supremum norms of random waves

Type: Article

Publication Date: 2015-09-01

Citations: 14

DOI: https://doi.org/10.3934/era.2015.22.76

Abstract

A compact Riemannian manifold may be immersed into Euclidean space by using high frequency Laplace eigenfunctions. We study the geometry of the manifold viewed as a metric space endowed with the distance function from the ambient Euclidean space. As an application we give a new proof of a result of Burq-Lebeau and others on upper bounds for the sup-norms of random linear combinations of high frequency eigenfunctions.

Locations

  • Electronic Research Announcements - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Mean of the $L^\infty$-norm for $L^2$-normalized random waves on compact aperiodic Riemannian manifolds 2013 Yaiza Canzani
Boris Hanin
+ Mean of the $L^\infty$-norm for $L^2$-normalized random waves on compact aperiodic Riemannian manifolds 2013 Yaiza Canzani
Boris Hanin
+ A sharp Wasserstein uncertainty principle for Laplace eigenfunctions 2021 Mayukh Mukherjee
+ Restriction of Laplace-Beltrami eigenfunctions to arbitrary sets on manifolds 2019 Suresh Eswarathasan
Malabika Pramanik
+ Restriction of Laplace-Beltrami eigenfunctions to arbitrary sets on manifolds 2019 Suresh Eswarathasan
Malabika Pramanik
+ On the Restriction of Laplace–Beltrami Eigenfunctions and Cantor-Type Sets 2021 Suresh Eswarathasan
Malabika Pramanik
+ PDF Chat Critical radii and suprema of random waves over Riemannian manifolds 2025 Renjie Feng
Dong Yao
Robert J. Adler
+ PDF Chat Concentration et randomisation universelle de sous-espaces propres 2017 Rafik Imekraz
+ Restriction of Laplace-Beltrami eigenfunctions to Cantor-type sets on manifolds 2019 Suresh Eswarathasan
Malabika Pramanik
+ Isoperimetric bounds for Wentzel-Laplace eigenvalues on Riemannian manifolds 2020 AĂŻssatou M. Ndiaye
+ Isoperimetric bounds for Wentzel-Laplace eigenvalues on Riemannian manifolds. 2020 AĂŻssatou M. Ndiaye
+ PDF Chat Growth of high Lp norms for eigenfunctions : an application of geodesic beams 2023 Yaiza Canzani
Jeffrey Galkowski
+ Eigenfunctions and a lower bound on the Wasserstein distance 2021 Nicolò De Ponti
Sara Farinelli
+ PDF Chat None 1976 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1970 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1930 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1979 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1937 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1905 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag
+ PDF Chat None 1994 Joachim Cuntz
David Masser
Tobias Colding
Daniel Huybrechts
Jun-Muk Hwang
Olivier Schiffmann
Jakob Stix
Gábor Székelyhidi
Franz StĂĽckle
Druck Und Verlag