Deep learning-enhanced variational Monte Carlo method for quantum many-body physics

Type: Article

Publication Date: 2020-02-14

Citations: 36

DOI: https://doi.org/10.1103/physrevresearch.2.012039

Abstract

The authors construct and develop an optimization scheme to train a deep convolutional neural network to represent many-body wave function. The paper explores its performance by applying the network to find the ground state of an SU(N) spin-chain Hamiltonian using variational quantum Monte Carlo.

Locations

  • Physical Review Research - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Neural-network quantum states for many-body physics 2024 Matija Medvidović
Javier Robledo Moreno
+ Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the Quantum Many-Body Schrödinger Equation 2023 Kirill Neklyudov
Jannes Nys
Luca Thiede
Juan Carrasquilla
Qiang Liu
Max Welling
Alireza Makhzani
+ PDF Chat Polynomially efficient quantum enabled variational Monte Carlo for training neural-network quantum states for physico-chemical applications 2024 Manas Sajjan
Vinit Kumar Singh
Sabre Kais
+ Variational optimization in the AI era: Computational Graph States and Supervised Wave-function Optimization 2018 Dmitrii Kochkov
Bryan K. Clark
+ PDF Chat Machine learning approach to dynamical properties of quantum many-body systems 2019 Douglas Hendry
Adrian Feiguin
+ DeepQMC: an open-source software suite for variational optimization of deep-learning molecular wave functions 2023 Zeno SchÀtzle
BernĂĄt SzabĂł
Matĕj Mezera
Jan Hermann
Frank Noé
+ PDF Chat Neural Quantum States in Variational Monte Carlo Method: A Brief Summary 2024 Yuntai Song
+ Neural network quantum state with proximal optimization: a ground-state searching scheme based on variational Monte Carlo 2022 Feng Chen
Ming Xue
+ PDF Chat Variational Monte Carlo with Neural Network Quantum States for Yang-Mills Matrix Model 2024 Norbert Bodendorfer
Onur Oktay
Vaibhav Gautam
Masanori Hanada
Enrico Rinaldi
+ PDF Chat Quantum-enhanced neural networks for quantum many-body simulations 2025 Zongkang Zhang
Ying Li
Xiaosi Xu
+ PDF Chat Unsupervised Deep Neural Network Approach To Solve Bosonic Systems 2024 Avishek Singh
Nirmal Ganguli
+ A Non-stochastic Optimization Algorithm for Neural-network Quantum States 2023 Xiang Li
Jia-Cheng Huang
Guang-Ze Zhang
Hao-En Li
Changsu Cao
Dingshun Lv
Han‐Shi Hu
+ PDF Chat Neural-network variational quantum algorithm for simulating many-body dynamics 2021 Chee Kong Lee
Pranay Patil
Shengyu Zhang
Chang Yu Hsieh
+ Efficient optimization of deep neural quantum states toward machine precision 2023 Ao Chen
Markus Heyl
+ An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes 2024 P. BernĂĄt SzabĂł
Zeno SchÀtzle
Michael Entwistle
Frank Noé
+ PDF Chat Learning eigenstates of quantum many-body Hamiltonians within the symmetric subspaces using neural network quantum states 2024 S. -T. Bao
Dian Wu
P. Zhang
Liang Wang
+ Neural network encoded variational quantum algorithms 2023 Jiaqi Miao
Chang-Yu Hsieh
Shi‐Xin Zhang
+ PDF Chat Neural-network-encoded variational quantum algorithms 2024 Jiaqi Miao
Chang‐Yu Hsieh
Shi‐Xin Zhang
+ Towards Neural Variational Monte Carlo That Scales Linearly with System Size 2022 Or Sharir
Garnet Kin‐Lic Chan
Anima Anandkumar
+ $2^{1296}$ Exponentially Complex Quantum Many-Body Simulation via Scalable Deep Learning Method 2022 Xiao Liang
Mingfan Li
Qian Xiao
An Hong
Lixin He
Xuncheng Zhao
Junshi Chen
Chao Yang
Fei Wang
Hong Qian

Works That Cite This (30)

Action Title Year Authors
+ PDF Chat Report on 2210.05871v1 2022 Stephan Humeniuk
Yuan Wan
Lei Wang
+ Efficient optimization of deep neural quantum states toward machine precision 2023 Ao Chen
Markus Heyl
+ PDF Chat <i>Ab initio</i> solution of the many-electron Schrödinger equation with deep neural networks 2020 David Pfau
James S. Spencer
Alexander Matthews
W. M. C. Foulkes
+ PDF Chat Deep Learning of Quantum Many-Body Dynamics via Random Driving 2022 Naeimeh Mohseni
Thomas Fösel
Lingzhen Guo
Carlos Navarrete–Benlloch
Florian Marquardt
+ PDF Chat Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics 2021 Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
Ekin D. Cubuk
Patrick Riley
Kieron Burke
+ PDF Chat Improved optimization for the neural-network quantum states and tests on the chromium dimer 2024 Xiang Li
Jia-Cheng Huang
Guang-Ze Zhang
Hao-En Li
Zhu-Ping Shen
Chen Zhao
Jun Li
Han‐Shi Hu
+ PDF Chat Automatic differentiable Monte Carlo: Theory and application 2023 Shi‐Xin Zhang
Zhou‐Quan Wan
Hong Yao
+ PDF Chat Synergy between deep neural networks and the variational Monte Carlo method for small <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi /><mml:mn>4</mml:mn></mml:msup><mml:mi>H</mml:mi><mml:msub><mml:mi>e</mml:mi><mml:mi>N</mml:mi></mml:msub></mml:math> clusters 2023 William Freitas
S. A. Vitiello
+ Scalable variational Monte Carlo with graph neural ansatz 2020 Li Yang
Wen-Jun Hu
Li Li
+ PDF Chat Determinant-free fermionic wave function using feed-forward neural networks 2021 Koji Inui
Yasuyuki Kato
Yukitoshi Motome

Works Cited by This (35)

Action Title Year Authors
+ PDF Chat Strongly interacting quantum gases in one-dimensional traps 2015 Li Yang
Liming Guan
Han Pu
+ PDF Chat Strongly interacting confined quantum systems in one dimension 2014 Artem G. Volosniev
D. V. Fedorov
A. S. Jensen
Manuel Valiente
N. T. Zinner
+ PDF Chat Spectroscopic observation of SU( <i>N</i> )-symmetric interactions in Sr orbital magnetism 2014 X. Zhang
Michael Bishof
Sarah Bromley
Christina V. Kraus
M. S. Safronova
P. Zoller
Ana MarĂ­a Rey
J. Ye
+ PDF Chat An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling 2012 Shintaro Taie
Rekishu Yamazaki
Seiji Sugawa
Yoshiro Takahashi
+ PDF Chat Exact SO(5) Symmetry in the Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Fermionic System 2003 Congjun Wu
Jiangping Hu
Shou-cheng Zhang
+ PDF Chat Two-orbital S U(N) magnetism with ultracold alkaline-earth atoms 2010 Alexey V. Gorshkov
Michael Hermele
Victor Gurarie
Chuanrui Xu
Paul S. Julienne
Jian Ye
P. Zoller
Eugene Demler
Mikhail D. Lukin
Ana MarĂ­a Rey
+ PDF Chat Variational Monte Carlo investigation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">SU</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:math>Heisenberg chains 2015 JĂ©rĂŽme Dufour
Pierre Nataf
Frédéric Mila
+ PDF Chat Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases 2014 F. Deuretzbacher
D. Becker
J. Bjerlin
S. M. Reimann
L. Santos
+ PDF Chat Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions 2014 Francesco Scazza
Christian Hofrichter
M. Höfer
P. C. de Groot
Immanuel Bloch
Simon Fölling
+ PDF Chat Ultracold Fermions and the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>Hubbard Model 2004 Carsten Honerkamp
Walter Hofstetter