Schrödinger operators with δ- and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions

Type: Review

Publication Date: 2014-07-31

Citations: 64

DOI: https://doi.org/10.1142/s0129055x14500159

Abstract

We investigate Schr\"odinger operators with \delta- and \delta'-interactions supported on hypersurfaces, which separate the Euclidean space into finitely many bounded and unbounded Lipschitz domains. It turns out that the combinatorial properties of the partition and the spectral properties of the corresponding operators are related. As the main result we prove an operator inequality for the Schr\"odinger operators with \delta- and \delta'-interactions which is based on an optimal colouring and involves the chromatic number of the partition. This inequality implies various relations for the spectra of the Schr\"odinger operators and, in particular, it allows to transform known results for Schr\"odinger operators with \delta-interactions to Schr\"odinger operators with \delta'-interactions.

Locations

  • Reviews in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Spectral Theory for Schrödinger Operators with $$\varvec{\delta }$$ δ -Interactions Supported on Curves in $$\varvec{\mathbb {R}^3}$$ R 3 2016 Jussi Behrndt
Rupert L. Frank
Christian Kühn
Vladimir Lotoreichik
Jonathan Rohleder
+ PDF Chat Essential spectrum of Schrödinger operators with δ‐interactions on the union of compact Lipschitz hypersurfaces 2013 Jussi Behrndt
Pavel Exner
Vladimir Lotoreichik
+ An eigenvalue inequality for Schrödinger operators with $δ$ and $δ'$-interactions supported on hypersurfaces 2014 Vladimir Lotoreichik
Jonathan Rohleder
+ PDF Chat An Eigenvalue Inequality for Schrödinger Operators with δ- and δ’-interactions Supported on Hypersurfaces 2015 Vladimir Lotoreichik
Jonathan Rohleder
+ One-dimensional Schrödinger operators with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>δ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:math>-interactions on Cantor-type sets 2014 Jonathan Eckhardt
Aleksey Kostenko
M. M. Malamud
Gerald Teschl
+ An eigenvalue inequality for Schr\"odinger operators with $\delta$ and $\delta'$-interactions supported on hypersurfaces 2014 Vladimir Lotoreichik
Jonathan Rohleder
+ PDF Chat Spectral Multipliers for the Kohn Laplacian on Forms on the Sphere in $$\mathbb {C}^n$$ 2017 Valentina Casarino
Michael Cowling
Alessio Martini
Adam Sikora
+ The gaps in the spectrum of the Schrödinger operator 2005 Haizhong Li
Linlin Su
+ PDF Chat Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces 2016 Jussi Behrndt
Pavel Exner
Markus Holzmann
Vladimir Lotoreichik
+ PDF Chat The Morse and Maslov indices for multidimensional Schrödinger operators with matrix-valued potentials 2016 Graham Cox
Christopher K. R. T. Jones
Yuri Latushkin
Alim Sukhtayev
+ PDF Chat Generalized interactions supported on hypersurfaces 2016 Pavel Exner
Jonathan Rohleder
+ PDF Chat Laplacian and spectral gap in regular Hilbert geometries 2014 Thomas Barthelmé
Bruno Colbois
Mickaël Crampon
Patrick Verovic
+ Schrödinger operators with $δ$-potentials supported on unbounded Lipschitz hypersurfaces 2021 Jussi Behrndt
Vladimir Lotoreichik
Peter Schlösser
+ Bound sets for a class of ϕ-Laplacian operators 2021 Guglielmo Feltrin
Fabio Zanolin
+ PDF Chat A spectral isoperimetric inequality for cones 2016 Pavel Exner
Vladimir Lotoreichik
+ PDF Chat A Lower Bound on the First Spectral Gap of Schrödinger Operators with Kato Class Measures 2009 Hendrik Vogt
+ Schrödinger operators with negative potentials and Lane–Emden densities 2017 Lorenzo Brasco
Giovanni Franzina
Berardo Ruffini
+ Spectral inequalities for Schroedinger operators with surface potentials 2007 Rupert L. Frank
Ари Лаптев
+ Harnack inequalities for Schrödinger operators 1999 Wolfhard Hansen
+ PDF Chat Spectral inequalities for Schrödinger operators with surface potentials 2008 Rupert L. Frank
Ари Лаптев