No repulsion between critical points for planar Gaussian random fields

Type: Article

Publication Date: 2020-01-01

Citations: 5

DOI: https://doi.org/10.1214/20-ecp362

Locations

  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • IRIS Research product catalog (Sapienza University of Rome) - View - PDF
  • Electronic Communications in Probability - View

Similar Works

Action Title Year Authors
+ No repulsion between critical points for planar Gaussian random fields 2019 Dmitry Beliaev
Valentina Cammarota
Igor Wigman
+ No repulsion between critical points for planar Gaussian random fields 2019 Dmitry Beliaev
Valentina Cammarota
Igor Wigman
+ PDF Chat Local repulsion of planar Gaussian critical points 2023 Safa Ladgham
Raphaël Lachièze-Rey
+ PDF Chat Mean number and correlation function of critical points of isotropic Gaussian fields 2019 Jean‐Marc Azäis
Céline Delmas
+ Local behavior of critical points of isotropic Gaussian random fields 2023 Paul Marriott
Weinan Qi
Yi Shen
+ On the expected number of critical points of locally isotropic Gaussian random fields 2024 Hao Xu
Haoran Yang
Qiang Zeng
+ The number of critical points of a Gaussian field: finiteness of moments 2024 Louis Gass
Michele Stecconi
+ PDF Chat Mean number and correlation function of critical points of isotropic Gaussian fields and some results on GOE random matrices 2022 Jean‐Marc Azäis
Céline Delmas
+ PDF Chat Critical point correlations in random Gaussian fields 2011 Avraham Klein
Oded Agam
+ PDF Chat A law of large numbers concerning the number of critical points of isotropic Gaussian functions 2024 Liviu I. Nicolaescu
+ Number of critical points of a Gaussian random field: Condition for a finite variance 2016 Anne Estrade
Julie Fournier
+ About repulsiveness of determinantal point processes 2014 Christophe A. N. Biscio
Frédéric Lavancier
+ Critical points of a non-Gaussian random field 2012 T. H. Beuman
A. M. Turner
V. Vitelli
+ Critical behaviour of stationary random fields 2005 G. Jona‐Lasinio
+ PDF Chat Thick points of random walk and the Gaussian free field 2020 Antoine Jégo
+ Complexity of Gaussian random fields with isotropic increments: critical points with given indices 2022 Antonio Auffinger
Qiang Zeng
+ PDF Chat Fractal behavior for nodal lines of smooth planar Gaussian fields at criticality 2024 David Vernotte
+ PDF Chat Random walks on random walks: non-perturbative results in high dimensions 2024 Stein Andreas Bethuelsen
Florian Völlering
+ PDF Chat Two Point Function for Critical Points of a Random Plane Wave 2017 Dmitry Beliaev
Valentina Cammarota
Igor Wigman
+ PDF Chat Statistics of Critical Points of Gaussian Fields on Large-Dimensional Spaces 2007 Alan J. Bray
David S. Dean