An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems

Type: Article

Publication Date: 2010-01-01

Citations: 47

DOI: https://doi.org/10.1137/090754200

Abstract

In this article we introduce an asymptotic preserving scheme designed to compute the solution of a two dimensional elliptic equation presenting large anisotropies. We focus on an anisotropy aligned with one direction, the dominant part of the elliptic operator being supplemented with Neumann boundary conditions. A new scheme is introduced which allows an accurate resolution of this elliptic equation for an arbitrary anisotropy ratio.

Locations

  • Multiscale Modeling and Simulation - View
  • DataCite API - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat An asymptotic preserving scheme for strongly anisotropic elliptic problems 2009 Pierre Degond
Fabrice Deluzet
Claudia Negulescu
+ Preserving the accuracy of numerical methods discretizing anisotropic elliptic problems 2019 Chang Yang
Fabrice Deluzet
Jacek Narski
+ Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation 2013 Jacek Narski
+ Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation 2013 Jacek Narski
+ PDF Chat Duality-based asymptotic-preserving method for highly anisotropic diffusion equations 2012 Pierre Degond
Fabrice Deluzet
Alexei Lozinski
Jacek Narski
Claudia Negulescu
+ PDF Chat A Hybrid Method for Anisotropic Elliptic Problems Based on the Coupling of an Asymptotic-Preserving Method with the Asymptotic Limit Model 2016 Anaïs Crestetto
Fabrice Deluzet
Claudia Negulescu
+ A hybrid method for anisotropic elliptic problems based on the coupling of an Asymptotic-Preserving method with the Asymptotic-Limit model 2015 Anaïs Crestetto
Fabrice Deluzet
Claudia Negulescu
+ A hybrid method for anisotropic elliptic problems based on the coupling of an Asymptotic-Preserving method with the Asymptotic-Limit model 2015 Anaïs Crestetto
Fabrice Deluzet
Claudia Negulescu
+ Numerical analysis of an asymptotic-preserving scheme for anisotropic elliptic equations 2015 Alexei Lozinski
Jacek Narski
Claudia Negulescu
+ Numerical analysis of an asymptotic-preserving scheme for anisotropic elliptic equations 2015 Alexei Lozinski
Jacek Narski
Claudia Negulescu
+ PDF Chat Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction 2014 Jacek Narski
M. Ottaviani
+ PDF Chat Effcient numerical methods for strongly anisotropic elliptic equations 2011 Christophe Besse
Fabrice Deluzet
Claudia Negulescu
Chang Yang
+ Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations 2012 Andrea Mentrelli
Claudia Negulescu
+ PDF Chat An efficient method for solving highly anisotropic elliptic equations 2011 Edward Santilli
Alberto Scotti
+ PDF Chat An efficient method for solving highly anisotropic elliptic equations 2011 Edward Santilli
Alberto Scotti
+ PDF Chat An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro–Macro decomposition 2011 Pierre Degond
Alexei Lozinski
Jacek Narski
Claudia Negulescu
+ PDF Chat On the numerical resolution of anisotropic equations with high order differential operators arising in plasma physics 2019 Chang Yang
Fabrice Deluzet
Jacek Narski
+ An Asymptotic Preserving method for strongly anisotropic diffusion equations based on field line integration 2016 Min Tang
Yihong Wang
+ Iterative Solvers for Elliptic Problems with Arbitrary Anisotropy Strengths 2018 Chang Yang
J Claustre
Fabrice Deluzet
+ PDF Chat Numerical resolution of an anisotropic non-linear diffusion problem 2014 Stéphane Brull
Fabrice Deluzet
Alexandre Mouton

Works That Cite This (33)

Action Title Year Authors
+ PDF Chat Numerical resolution of an anisotropic non-linear diffusion problem 2014 Stéphane Brull
Fabrice Deluzet
Alexandre Mouton
+ PDF Chat Numerical Methods for Computing an Averaged Matrix Field. Application to the Asymptotic Analysis of a Parabolic Problem with Stiff Transport Terms 2019 Thomas Blanc
+ PDF Chat A fully implicit, asymptotic-preserving, semi-Lagrangian algorithm for the time dependent anisotropic heat transport equation 2024 Oleksandr Koshkarov
Luis Chacón
+ PDF Chat Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction 2014 Jacek Narski
M. Ottaviani
+ PDF Chat Numerical Approximation of the Euler-Poisson-Boltzmann Model in the Quasineutral Limit 2011 Pierre Degond
H. Liu
D. Savelief
Marie-Hélène Vignal
+ PDF Chat Numerical approximation of the Euler–Maxwell model in the quasineutral limit 2011 Pierre Degond
Fabrice Deluzet
D. Savelief
+ A semi-discrete tailored finite point method for a class of anisotropic diffusion problems 2013 Houde Han
Zhongyi Huang
Wenjun Ying
+ PDF Chat Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime 2019 Mehdi Badsi
+ PDF Chat A Hybrid Method for Anisotropic Elliptic Problems Based on the Coupling of an Asymptotic-Preserving Method with the Asymptotic Limit Model 2016 Anaïs Crestetto
Fabrice Deluzet
Claudia Negulescu
+ PDF Chat On the numerical resolution of anisotropic equations with high order differential operators arising in plasma physics 2019 Chang Yang
Fabrice Deluzet
Jacek Narski