On local well-posedness and ill-posedness results for a coupled system of mkdv type equations

Type: Article

Publication Date: 2020-11-23

Citations: 2

DOI: https://doi.org/10.3934/dcds.2020382

Abstract

<p style='text-indent:20px;'>We consider the initial value problem associated to a coupled system of modified Korteweg-de Vries type equations <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} \partial_tv + \partial_x^3v + \partial_x(vw^2) = 0,&amp;v(x,0) = \phi(x),\\ \partial_tw + \alpha\partial_x^3w + \partial_x(v^2w) = 0,&amp; w(x,0) = \psi(x), \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>and prove the local well-posedness results for a given data in low regularity Sobolev spaces <inline-formula><tex-math id="M1">\begin{document}$ H^{s}( \rm{I}\! \rm{R})\times H^{k}( \rm{I}\! \rm{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ s,k&gt; -\frac12 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ |s-k|\leq 1/2 $\end{document}</tex-math></inline-formula>, for <inline-formula><tex-math id="M4">\begin{document}$ \alpha\neq 0,1 $\end{document}</tex-math></inline-formula>. Also, we prove that: (I) the solution mapping that takes initial data to the solution fails to be <inline-formula><tex-math id="M5">\begin{document}$ C^3 $\end{document}</tex-math></inline-formula> at the origin, when <inline-formula><tex-math id="M6">\begin{document}$ s&lt;-1/2 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M7">\begin{document}$ k&lt;-1/2 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M8">\begin{document}$ |s-k|&gt;2 $\end{document}</tex-math></inline-formula>; (II) the trilinear estimates used in the proof of the local well-posedness theorem fail to hold when (a) <inline-formula><tex-math id="M9">\begin{document}$ s-2k&gt;1 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M10">\begin{document}$ k&lt;-1/2 $\end{document}</tex-math></inline-formula> (b) <inline-formula><tex-math id="M11">\begin{document}$ k-2s&gt;1 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M12">\begin{document}$ s&lt;-1/2 $\end{document}</tex-math></inline-formula>; (c) <inline-formula><tex-math id="M13">\begin{document}$ s = k = -1/2 $\end{document}</tex-math></inline-formula>;

Locations

  • Discrete and Continuous Dynamical Systems - View - PDF

Similar Works

Action Title Year Authors
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ Sharp well-posedness for a coupled system of mKdV type equations 2020 Xavier Carvajal
Liliana Esquivel
Rui Santos
+ PDF Chat Sharp well-posedness for a coupled system of mKdV-type equations 2019 Xavier Carvajal
Mahendra Panthee
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ PDF Chat A remark on the local well-posedness for a coupled system of mKdV type equations in H^s × H^k 2020 Xavier Carvajal
+ Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 2003 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat Global well-posedness of Korteweg–de Vries equation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2009 Zihua Guo
+ PDF Chat Well-posedness and critical index set of the Cauchy problem for the coupled KdV-KdV systems on $ \mathbb{T} $ 2022 Xin Yang
Bing‐Yu Zhang
+ PDF Chat Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data 2020 Keyan Wang
Yao Xiao
+ Local Well-posedness of the Coupled KdV-KdV Systems on the whole line $R$ 2018 Xin Yang
Bing‐Yu Zhang
+ Global well-posedness for the modified korteweg-de vries equation 1999 German Fonsecal
Felipe Linares
Gustavo Ponce
+ Global Well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\R)$ 2008 Zihua Guo
+ PDF Chat Well-posedness of a initial-boundary value problem of a system coupled by KdV equations 2022 Haiyan Lu
Xiangqing Zhao
+ PDF Chat Global well-posedness for a coupled modified KdV system 2012 Adán J. Corcho
Mahendra Panthee
+ PDF Chat Local well-posedness of the coupled KdV-KdV systems on $ \mathbb{R} $ 2022 Xin Yang
Bing‐Yu Zhang
+ PDF Chat On classes of well-posedness for quasilinear diffusion equations in the whole space 2020 Boris Andreïanov
Mohamed Maliki
+ Local well-posedness of the fifth-order KdV-type equations on the half-line 2018 Márcio Cavalcante
Chulkwang Kwak
+ Global well posedness and inviscid limit for the Korteweg-de Vries-Burgers equation 2008 Zihua Guo
Baoxiang Wang