Topological geodesics and virtual rigidity

Type: Article

Publication Date: 2001-06-03

Citations: 4

DOI: https://doi.org/10.2140/agt.2001.1.369

Abstract

We introduce the notion of a topological geodesic in a 3-manifold.Under suitable hypotheses on the fundamental group, for instance word-hyperbolicity, topological geodesics are shown to have the useful properties of, and play the same role in several applications as, geodesics in negatively curved spaces.This permits us to obtain virtual rigidity results for 3-manifolds.

Locations

  • Algebraic & Geometric Topology - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The geometry of geodesics 1955 Herbert Busemann
+ Geometry of Nonpositively Curved Manifolds 1997 Patrick Eberlein
+ Hyperbolic manifolds are geodesically rigid 2003 Vladimir S. Matveev
+ Geodesics and Global Geometry 1998
+ PDF Chat Complexity of virtual 3-manifolds 2016 Andreĭ Vesnin
Vladimir G. Turaev
Evgeny Fominykh
+ Complexity of virtual 3-manifolds 2016 Evgeny Fominykh
Vladimir Turaev
Andreĭ Vesnin
+ Complexity of virtual 3-manifolds 2016 Evgeny Fominykh
Vladimir Turaev
Andreĭ Vesnin
+ PDF Chat Gromov Hyperbolicity, John Spaces, and Quasihyperbolic Geodesics 2022 Qingshan Zhou
Yaxiang Li
Antti Rasila
+ Hyperbolic geometry and 3-manifold topology 2009 David Gabai
+ PDF Chat Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity 2008 Jason Behrstock
Cornelia Druţu
Lee Mosher
+ Geodesic rigidity of certain classes of almost contact metric manifolds 2007 В. Ф. Кириченко
Elena A. Polkina
+ Some connections between global hyperbolicity and geodesic completeness 1989 Gregory J. Galloway
+ Hyperbolic geometry and 3-manifolds 2015 Bennett Chow
Sun-Chin Chu
David Glickenstein
Christine Guenther
James Isenberg
Tom Ivey
Dan Knopf
Peng Lu
Feng Luo
Lei Ni
+ Geodesics 2007
+ Marked Length Spectrum Rigidity for Surface Amalgams 2023 Yandi Wu
+ 2 Rigidity of hyperbolic manifolds 1996
+ Geodesic-lengths, twists and symplectic geometry 2010 Scott A. Wolpert
+ The Theory of Closed Geodesics 2009 Wilhelm Klingenberg
+ The Manifold of Geodesics 1978 Arthur L. Besse
+ Geometry of Geodesics and Related Topics 1984