Scaling laws for random walks in long-range correlated disordered media

Type: Article

Publication Date: 2017-03-01

Citations: 4

DOI: https://doi.org/10.5488/cmp.20.13004

Abstract

We study the scaling laws of diffusion in two-dimensional media with long-range correlated disorder through exact enumeration of random walks.The disordered medium is modelled by percolation clusters with correlations decaying with the distance as a power law, r -a , generated with the improved Fourier filtering method.To characterize this type of disorder, we determine the percolation threshold p c by investigating cluster-wrapping probabilities.At p c , we estimate the (sub-diffusive) walk dimension d w for different correlation exponents a. Above p c , our results suggest a normal random walk behavior for weak correlations, whereas anomalous diffusion cannot be ruled out in the strongly correlated case, i.e., for small a.

Locations

  • arXiv (Cornell University) - View - PDF
  • The scientific electronic library of periodicals of the National Academy of Sciences of Ukraine (National Academy of Sciences of Ukraine) - View - PDF
  • DataCite API - View
  • Condensed Matter Physics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Percolation thresholds and fractal dimensions for square and cubic lattices with long-range correlated defects 2017 Johannes Zierenberg
Niklas Fricke
Martin Marenz
F. Paul Spitzner
Viktoria Blavatska
Wolfhard Janke
+ PDF Chat Statistics of the critical percolation backbone with spatial long-range correlations 2003 Ascânio D. Araújo
André A. Moreira
R. N. Costa Filho
José S. Andrade
+ Anomalous Behavior of Random Walks on Disordered Media 2021 Takashi Kumagai
+ Novel method for generating long-range correlations 1995 Hernán A. Makse
Shlomo Havlin
H. Eugene Stanley
Moshe Schwartz
+ Fractal behavior of correlated random walk on percolating clusters 1986 Robert Bosch
+ PDF Chat Scaling up the Anderson transition in random-regular graphs 2020 M. Pino
+ Fractal dimension and threshold properties in a spatially correlated percolation model 2009 Hongting Yang
Wen Zhang
Noah Bray-Ali
Stephan Haas
+ PDF Chat Multifractal behavior of linear polymers in disordered media 2000 Anke Ordemann
Markus Porto
H. Eduardo Roman
Shlomo Havlin
Armin Bunde
+ Universal superdiffusion of random walks in media with embedded fractal networks of low diffusivity 2024 F. D. A. Aarão Reis
Vaughan R. Voller
+ PDF Chat Walking on fractals: diffusion and self-avoiding walks on percolation clusters 2008 Viktoria Blavatska
Wolfhard Janke
+ Structural and dynamical properties of long-range correlated percolation 1992 Sona Prakash
Shlomo Havlin
Moshe Schwartz
H. Eugene Stanley
+ PDF Chat Diffusion in Disordered Media 2024 Anders Malthe‐Sørenssen
+ Scaling theory for the statistics of self-avoiding walks on random lattices 1987 A. K. Roy
Bikas K. Chakrabarti
+ PDF Chat Distance traveled by random walkers before absorption in a random medium 2006 David S. Dean
Clément Sire
Julien Sopik
+ PDF Chat Random walkers with shrinking steps in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi></mml:math>dimensions and their long term memory 2006 T. Rador
+ Fast realization of a spatially correlated percolation model 2013 Hongting Yang
Stephan Haas
+ PDF Chat Polymers in long-range-correlated disorder 2001 Viktoria Blavatska
Christian von Ferber
Yurij Holovatch
+ Scaling properties of a percolation model with long-range correlations 1996 Muhammad Sahimi
Sumit Mukhopadhyay
+ Random walks in correlated diffusivity landscapes 2023 Adrian Pacheco-Pozo
Igor M. Sokolov
+ Finite-size scaling for random walks on fractals 1995 F. D. A. Aarão Reis