The braided Thompson's groups are of type F<sub>∞</sub>

Type: Article

Publication Date: 2014-05-20

Citations: 43

DOI: https://doi.org/10.1515/crelle-2014-0030

Abstract

Abstract We prove that the braided Thompson’s groups <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>V</m:mi> <m:mi>br</m:mi> </m:msub> </m:math> {V_{\mathrm{br}}} and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>F</m:mi> <m:mi>br</m:mi> </m:msub> </m:math> {F_{\mathrm{br}}} are of type <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi mathvariant="normal">F</m:mi> <m:mi mathvariant="normal">∞</m:mi> </m:msub> </m:math> {\rm F}_{\infty} , confirming a conjecture by John Meier. The proof involves showing that matching complexes of arcs on surfaces are highly connected. In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Braided Brin-Thompson Groups 2021 Robert Spahn
+ PDF Chat On Belk’s classifying space for Thompson’s group <i>F</i> 2016 Lucas Sabalka
Matthew C. B. Zaremsky
+ Thompson's Group F 2007 James Belk
+ THOMPSON'S GROUP F 2004 James Belk
+ Finiteness properties and homological stability for relatives of braided Higman-Thompson groups 2021 Rachel Skipper
Xiaolei Wu
+ Geometric structures related to the braided Thompson groups 2018 Matthew C. B. Zaremsky
+ Geometric structures related to the braided Thompson groups 2018 Matthew C. B. Zaremsky
+ Regular Isotopy Classes of Link Diagrams From Thompson's Groups 2020 Rushil Raghavan
Dennis J. Sweeney
+ The braided Ptolemy-Thompson group $T^*$ is asynchronously combable 2006 Louis Funar
Christophe Kapoudjian
+ Geometric presentations for Thompson's groups and the multiscaled braid group 2004 Patrick Dehornoy
+ Asymptotically rigid mapping class groups I: Finiteness properties of braided Thompson's and Houghton's groups 2020 Anthony Genevois
Anne Lonjou
Christian Urech
+ Pure braid subgroups of braided Thompson's groups 2006 Thomas A. Brady
José Burillo
Sean Cleary
Melanie Stein
+ Pure braid subgroups of braided Thompson's groups 2006 Thomas J. Brady
José Burillo
Sean Cleary
Melanie Stein
+ PDF Chat The Brin–Thompson groups<i>sV</i>are of type F<sub>∞</sub> 2013 Martin Fluch
Marco Marschler
Stefan Witzel
Matthew C. B. Zaremsky
+ PDF Chat Asymptotically rigid mapping class groups, I : Finiteness properties of braided Thompson’s and Houghton’s groups 2022 Anthony Genevois
Anne Lonjou
Christian Urech
+ Statistical Properties of Thompson's Group and Random Pseudo Manifolds 2005 Benjamin M. Woodruff
+ Braided Thompson groups with and without quasimorphisms 2022 Francesco Fournier-Facio
Yash Lodha
Matthew C. B. Zaremsky
+ On normal subgroups of the braided Thompson groups 2014 Matthew C. B. Zaremsky
+ On normal subgroups of the braided Thompson groups 2014 Matthew C. B. Zaremsky
+ On Dehn’s decision problems in generalized Thompson’s groups 2021 Julio Aroca Lobato