COMBINATORIAL AND TOPOLOGICAL PHASE STRUCTURE OF NON-PERTURBATIVE n-DIMENSIONAL QUANTUM GRAVITY

Type: Article

Publication Date: 1992-06-01

Citations: 1

DOI: https://doi.org/10.1142/s0217979292001055

Abstract

We provide a non-perturbative geometrical characterization of the partition function of ndimensional quantum gravity based on a rough classification of Riemannian geometries. We show that, under natural geometrical constraints, the theory admits a continuum limit with a non-trivial phase structure parametrized by the homotopy types of the class of manifolds considered. The results obtained qualitatively coincide, when specialized to dimension two, with those of two-dimensional quantum gravity models based on random triangulations of surfaces.

Locations

  • International Journal of Modern Physics B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bounded geometries and topology fluctuations in lattice quantum gravity 1992 Mauro Carfora
Annalisa Marzuoli
+ Random Surfaces and Quantum Gravity: Looking for the Emergence of Continuum Theories from Triangulated Manifolds 1993 Mark J. Bowick
Bernd Brügmann
Paul Coddington
Lei Han
Geoff Harris
Enzo Marinari
+ Quantum Geometry 1997 J. Ambjørn
Bergfinnur Durhuus
Thórdur Jónsson
+ Combinatorial Quantum Gravity: Emergence of Geometric Space from Random Graphs 2019 Christy Kelly
Carlo A. Trugenberger
+ Critical Phenomena for Riemannian Manifolds: Simple Homotopy and Simplicial Quantum Gravity 1993 Mauro Carfora
Annalisa Marzuoli
+ PDF Chat The modular geometry of random Regge triangulations 2002 Mauro Carfora
Claudio Dappiaggi
Annalisa Marzuoli
+ PDF Chat Random manifolds and quantum gravity 2000 A Krzywicki
+ PDF Chat Random manifolds and quantum gravity 2000 A. Krzywicki
+ Two-dimensional Quantum Gravity 1998 Juri Rolf
+ PDF Chat Entropy estimates for simplicial quantum gravity 1995 Mauro Carfora
Annalisa Marzuoli
+ PDF Chat Quantum geometry of topological gravity 1997 J. Ambjørn
Κωνσταντίνος Αναγνωστόπουλος
T. Ichihara
Lars Juhl Jensen
Noboru Kawamoto
Y. Watabiki
K. Yotsuji
+ Applications of Random Graphs to 2D Quantum Gravity 2011 Max R. Atkin
+ Quantum gravity and random surfaces 1992 H. Kawai
+ Topological Aspects of Classical and Quantum Gravity. 1986 Donald Witt
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-dimensional quantum gravity as the continuum limit of causal dynamical triangulations 2007 Dario Benedetti
R. Loll
Francesco Zamponi
+ Strings, loops and others: a critical survey of the present approaches to quantum gravity 1998 Carlo Rovelli
+ Strings, loops and others: a critical survey of the present approaches to quantum gravity 1998 Carlo Rovelli
+ PDF Chat Entropy of random coverings and 4D quantum gravity 1996 Claudio Bartocci
Ugo Bruzzo
Mauro Carfora
Annalisa Marzuoli
+ Combinatorial Quantum Gravity 2016 Carlo A. Trugenberger
+ PDF Chat Dimensional flow in discrete quantum geometries 2015 Gianluca Calcagni
Daniele Oriti
Johannes Thürigen

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat Loop quantization as a continuum limit 2006 Elisa Manrique
Robert Oeckl
Axel Weber
José A. Zapata

Works Cited by This (1)

Action Title Year Authors
+ Statistical Mechanics: Rigorous Results 1969 David Ruelle