Feynman integrals and intersection theory

Type: Article

Publication Date: 2019-02-01

Citations: 172

DOI: https://doi.org/10.1007/jhep02(2019)139

Abstract

We introduce the tools of intersection theory to the study of Feynman integrals, which allows for a new way of projecting integrals onto a basis. In order to illustrate this technique, we consider the Baikov representation of maximal cuts in arbitrary space-time dimension. We introduce a minimal basis of differential forms with logarithmic singularities on the boundaries of the corresponding integration cycles. We give an algorithm for computing a basis decomposition of an arbitrary maximal cut using so-called intersection numbers and describe two alternative ways of computing them. Furthermore, we show how to obtain Pfaffian systems of differential equations for the basis integrals using the same technique. All the steps are illustrated on the example of a two-loop non-planar triangle diagram with a massive loop.

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Decomposition of Feynman integrals on the maximal cut by intersection numbers 2019 Hjalte Frellesvig
Federico Gasparotto
S. Laporta
Manoj K. Mandal
Pierpaolo Mastrolia
Luca Mattiazzi
Sebastian Mizera
+ Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers 2019 Manoj K. Mandal
Hjalte Frellesvig
Federico Gasparotto
S. Laporta
Pierpaolo Mastrolia
Luca Mattiazzi
Sebastian Mizera
+ PDF Chat Co-Homology of Differential Forms and Feynman Diagrams 2021 Sergio L. Cacciatori
Maria Conti
Simone Trevisan
+ A modern approach to Feynman Integrals and Differential Equations 2018 Federico Gasparotto
+ The recursive structure of Baikov representations II: the top-down reduction with intersection theory 2023 Xuhang Jiang
Ming Lian
Li Lin Yang
+ PDF Chat Feynman Integral Reductions by Intersection Theory with Orthogonal Bases and Closed Formulae 2024 Giulio Crisanti
S. H. Smith
+ Feynman integral reductions by intersection theory with orthogonal bases and closed formulae 2024 Giulio Crisanti
S. H. Smith
+ PDF Chat Cuts of Feynman Integrals in Baikov representation 2017 Hjalte Frellesvig
C.G. Papadopoulos
+ PDF Chat Baikov representations, intersection theory, and canonical Feynman integrals 2022 Jiaqi Chen
Xuhang Jiang
Chichuan Ma
Xiaofeng Xu
Li Lin Yang
+ Baikov representations, intersection theory, and canonical Feynman integrals 2022 Jiaqi Chen
Xuhang Jiang
Chichuan Ma
Xiaofeng Xu
Li Lin Yang
+ PDF Chat Decomposition of Feynman integrals by multivariate intersection numbers 2021 Hjalte Frellesvig
Federico Gasparotto
S. Laporta
Manoj K. Mandal
Pierpaolo Mastrolia
Luca Mattiazzi
Sebastian Mizera
+ PDF Chat Intersection theory, relative cohomology and the Feynman parametrization 2024 Mingming Lu
Ziwen Wang
Li Yang
+ PDF Chat Azurite: An algebraic geometry based package for finding bases of loop integrals 2017 Alessandro Georgoudis
Kasper J. Larsen
Yang Zhang
+ PDF Chat Baikov-Lee representations of cut Feynman integrals 2017 Mark Harley
Francesco Moriello
Robert M. Schabinger
+ Feynman Integrals 2022 Stefan Weinzierl
+ The diagrammatic coaction and the algebraic structure of cut Feynman integrals 2018 Samuel Abreu
Ruth Britto
Claude Duhr
Einan Gardi
+ The diagrammatic coaction and the algebraic structure of cut Feynman integrals 2018 Samuel Abreu
Ruth Britto
Claude Duhr
Einan Gardi
+ The diagrammatic coaction and the algebraic structure of cut Feynman integrals 2018 Samuel Abreu
Ruth Britto
Claude Duhr
Einan Gardi
+ PDF Chat Differential equations on unitarity cut surfaces 2017 Mao Zeng
+ On the Application of Intersection Theory to Feynman Integrals: the univariate case 2022 Hjalte Frellesvig
Luca Mattiazzi